
 
 

Proposal No. 830929 Project start: February 1, 2019 
Call H2020-SU-ICT-03-2018 Project duration: 42 months 

 

 

 

 
 
 

 

D3.10 
Cybersecurity outlook 1 

Document Identification 

Due date 30 September 2020 

Submission date 29 September 2020 

Revision  1.0 

 
 

Related WP WP3 Dissemination  
Level 

PU 

Lead 
Participant 

POLITO Lead Author Daniele Canavese 
(POLITO) 

Contributing 
Beneficiaries 

GUF, POLITO, 
UMU 

Related 
Deliverables 

- 

 
  



CyberSec4Europe D3.10 Cybersecurity outlook 1 

 
   

 
 ii 
 

Abstract: This deliverable describes the state-of-the-art, the current trends that are currently emerging in 
the cybersecurity field. This document is the first outcome of Task 3.9 ‘Continuous scouting’, whose goal 
is to constantly look for new outgoing research challenges and developments that can provide interesting 
ideas not only to the academic partners, but also to the use case owners. Henceforth, this document reports 
a variety of new advancements, and emerging security technologies in various branches, such as artificial 
intelligence, 5G applications and trusted execution environments, that, in the near future, could play a 
pivotal role in our daily lives, but, at least for now, provide us with new hints and food for thoughts. 
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Executive Summary 

This deliverable reports the outcomes of Task 3.9 on Continuous Scouting. The goal of this task is to 
constantly analyze emerging technologies and new trends in the cybersecurity field in order to give both 
academic and industrial partners interesting food for thoughts for the future. 

This document describes four IT branches that have seen several interesting developments and applications 
in the cybersecurity area in the last couple of years: 

● intelligence techniques, mostly based on machine learning models, can be used to handle threats in 
a timely and privacy-preserving manner with the least amount of human interaction possible; 

● artificial intelligence is frequently used to secure digital assets, but an attacker can also use them 
for a variety of purposes such as to confuse a machine learning system in order perform the wrong 
action when an input is received (e.g. misclassify a cyberattack) or help an evildoer to automatically 
gather information about a victim (i.e. for social engineering purposes); 

● zero-trust security systems can be used to create a more secure environments and the last few years 
have seen the developments of new technologies and the discovery of state-of-the-art attacks; 

● 5G, the new wireless standard, promises to make the world more connected than ever since it is 
being adopted in various embedded and Internet-of-Things devices. 

This document reports not only new trends, attacks and emerging developments in the research world, but 
it also discusses how these state-of-the-art technologies are deployed and used by the current industries. 
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1 Introduction 

In our fast-moving world, life quality is largely determined by the technological level that an individual can 
directly and indirectly access. Computers, Internet-of-things and embedded devices are ubiquitous. They 
surround us in our working place, in our homes, on the streets and even in our cars. With so much hardware 
and software close to our personal lives, a cyberattack can threaten us closer than ever. The first and last 
line of defense against these threats is given by many new cybersecurity techniques that are constantly 
emerging and evolving. 

Due to the ever-changing quality of technology it is important to be constantly prepared against new form 
of menaces. In this document we report a variety of new cybersecurity technologies, trends and issues that 
have emerged in the last couple of years and that can become game changers soon. We report the current 
state-of-the-art in various cybersecurity fields and, where applicable, we also discuss what are the challenges 
for their deployment. 

The investigation documented in this report is useful not only for researchers, but also for the people more 
directly involved in the industry as it can yield interesting food for thought for real world applications. 

This document contains several chapters, each one devoted to a specific cybersecurity field: 

● in Chapter 2 Threat intelligence we analyze what are the most recent trends and machine-learning 
techniques that can be used to detect network and malware attacks, discussing also their 
applicability and their privacy issues according to the recent GDPR [GDPR 2016]; 

● in Chapter 3 AI for adversarial purposes we investigate how various artificial intelligence 
techniques can be exploited by an evildoer to craft ad-hoc samples to purposely confuse various 
types of detection systems and how they can use AI-based approaches to automate various aspects 
of social engineering attacks (e.g. phishing); 

● in Chapter 4 Zero-trust security systems we discuss what are the most recent zero-trust security 
technologies that can be used to create tamper-free execution environments, and, in addition, we 
also report some new (worrying) attacks against these technologies; 

● in Chapter 5 5G applications we analyze the security of 5G networks, what are their weaknesses, 
and how artificial intelligence, hardware protections and various other approaches can be used to 
strengthen this soon-to-be pervasive technology. 

Finally, in Chapter 6 we present our conclusions and in Chapter 7 we list all our references in alphabetical 
order.  
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2 Threat intelligence 

Threat intelligence is a broad field in the heterogeneous realm of cybersecurity where information about 
attacks and attackers is gathered in a manual or automated fashion. The standard approach over the last 
years has been the manual analysis of security related events. However, the exponential growth of data 
produced by organizations makes the adoption of artificial intelligence and automatic techniques for 
cybersecurity purposes a necessity. Machine and deep learning techniques have been recently applied in a 
plethora of real-life scenarios. 

2.1 Threat detection 

The NIST (National Institute of Standards and Technology) defines a threat1 as “any circumstance or event 
with the potential to adversely impact organizational operations (including mission, functions, image, or 
reputation), organizational assets, or individuals through an information system via unauthorized access, 
destruction, disclosure, modification of information, and/or denial of service”. Identifying threats in a timely 
fashion is of paramount importance for organizations, since it is the only way to appropriately respond to 
such menaces and thus limit the related damages. In this section we present a selection of these use cases, 
explaining the use of threat intelligence techniques for the automatic configuration of web application 
firewalls, the protection of Internet-of-things appliances against botnet infections and the detection of 
malware threats. 

2.1.1 Web application firewalls 

Web Application Firewalls (WAF) are security appliances employed on web servers to monitor the HTTP 
(HyperText Transfer Protocol) traffic exchanged between the hosted applications and the clients requesting 
the offered services, in order to detect and consequently block attacks, typically mounted by malicious actors 
by leveraging vulnerabilities in the code of web applications. WAFs are typically configured manually by 
network administrators, specifying rules on the payload of HTTP packets to identify specific attacks. 
However, writing such rules is typically cumbersome and error prone. Thus, a lot of research is being 
conducted in using machine learning algorithms to automate this task. 

Mereani et al. [Mereani 2018] investigated the use of an algorithm to identify Cross-Site Scripting (XSS) 
attacks, which occur when an attacker successfully injects a malicious script in a web application’s code. 
The script is therefore downloaded and executed in the browser of the victim browsing the infected page. It 
should be noted that typically attackers employ strong forms of obfuscation to render the scope of such 
script unintelligible by manual analysis (the same is done by legitimate web application coders to preserve 
their intellectual rights). The authors analyzed scripts from the XSSed archive2 to build a dataset, extracting 
59 features both structural (presence of non-alphanumeric characters, employed extensively by obfuscation 
techniques) and behavioral (including objects, events, methods and tags used in the script code). The authors 
used the dataset to train SVM, k-NN and random forest models able to identify malicious XSS scripts. All 

 
 

1 See https://csrc.nist.gov/glossary/term/threat. 
2 See http://www.xssed.com/. 

https://csrc.nist.gov/glossary/term/threat
http://www.xssed.com/
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models performed well, with an accuracy over 95%, with the best one being the k-NN based one with an 
accuracy over 99%. 

Another typical attack against web applications is the SQL injection. Attackers can try to exfiltrate sensitive 
data (e.g. login credentials, e-mails, credit card numbers) hosted in databases used by such applications, by 
abusing user input (e.g. login forms) to execute special SQL queries. Ross et al. [Ross 2018] presented a 
comprehensive comparison of different machine learning techniques to identify injection attacks against a 
MySQL server, acting as a backend for a custom messaging web application. They propose a concurrent 
analysis of traffic on both the web application server interface over the Internet and on the connection 
between the server and the MySQL database, in order to increase the attack detection performances. Three 
different datasets are obtained generating and consequently capturing traffic using a set of custom-made 
Python scripts. The first two are obtained by capturing traffic respectively on the web application and 
MySQL servers, and the third by correlating samples captured on both sites originating from the same SQL 
query. The authors trained various algorithms using different machine learning techniques (RF, SVM and 
ANN) on the three datasets. Using the dataset containing the correlated samples, the average accuracy 
among different machine learning techniques increased from 95% to 97%, with the best algorithm being 
based on ANNs (97,2% accuracy). 

Finally, Calzavara et al. presented Mitch [Calzavara 2019], an approach to detect Cross-Site Request 
Forgery (CSRF) vulnerabilities on web applications. In this kind of attack, a user, logged in a legitimate but 
vulnerable website, visits (unknowingly) a malicious website, which uses the logged state of the user to 
forge requests to the legitimate website on the user’s behalf. The authors have built a dataset by manually 
browsing 60 websites obtained from the Alexa ranking3, capturing the HTTP traffic, and marking the 
requests that can be potentially subject to CSRF attacks (e.g. functionalities of the web application that are 
available only after a login by the user). The authors have subsequently built a dataset by extracting from 
the requests 49 features, originating from structural (e.g. number of parameters), textual (e.g. occurrences 
of specific words) and functional (e.g. HTTP request method) characteristics of the analyzed requests. Using 
this dataset, they have tested various machine learning techniques (comprising SVM, DT and RF), the best 
performing being the RF-based one with a ROC AUC score of 93.2%. 

2.1.2 Internet-of-things 
The introduction of the Internet-Of-Things (IoT) paradigm is one of the last big revolutions in the IT 
scenario. The IoT term encompasses the introduction of computational intelligence in objects used in many 
objects of everyday life, including, for example, wearable devices (e.g. smartwatches), automobiles, 
domestic and video surveillance appliances. Typically, these objects do not need a high amount of 
computational power to carry out their tasks. Employing powerful hardware would lead therefore to 
unnecessary costs, and in many cases would be impossible (e.g. battery capacity limitations on wearable 
devices). However, from a cybersecurity point of view, this limitation renders the application of typical 
security solutions (e.g. antiviruses and firewalls) impossible. This in turn renders such devices a perfect 
target for attacks by malicious actors. Typically, they try to infect such unprotected devices with some kind 

 
 

3 See https://www.alexa.com/topsites. 

https://www.alexa.com/topsites
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of malware, taking control of them in order to create botnets, which are typically used to carry on Distributed 
Denial-of-Service (DDoS) attacks, unknowingly from the legitimate proprietors of the involved devices. A 
notable example has been the Mirai malware [Manos 2017], which in 2016 has been used to create botnets, 
which in turn have been employed to undertake successful DDoS attacks against a wide range of well-
known websites and web hosting platforms (including GitHub, Twitter, Reddit and OVH). 

A report by Kaspersky4 [Kupreev 2020] indicates a staggering increase of the occurrence of DDoS attacks, 
with the number of such attack duplicating in Q1 2020 with respect to the same quarter of the previous year. 

Two main strategies are found in literature to defend against this kind of attacks, both employing various 
machine learning techniques. The first one is the identification of TCP/UDP connections established by the 
controlled botnet devices (or zombies) with the target (e.g. a web server hosting the attacked web page). 
Such controls may be executed both on the access point of the network comprising the zombies (e.g. the 
home gateway), or on the targeted devices (e.g. a web server). The latter can close these connections as soon 
as they are identified as DDoS-related ones, thus preserving computational resources and consequently 
mitigating the attack effects (i.e. preserving the availability of the service offered by the attack target). A 
recent work by Doshi et al. [Doshi 2018] tackles this problem, presenting the performances of five different 
machine learning algorithms (k-nearest neighbors, support vector machines, decision trees, random forests 
and fully connected neural networks) trained to identify three typical DoS  attacks (employed for example 
by the Mirai botnets): TCP SYN flood, UDP flood and HTTP GET flood. They used a combination of 
stateless (e.g. packet size, inter-packet interval and protocol) and stateful (e.g. bandwidth, IP destination 
address cardinality and novelty) features evaluated on the analyzed traffic to train the machine learning 
algorithms, with the one performing better being the FCNN with an accuracy of 99%. Another work by 
Aamir et al. [Aamir 2019] presents a semi-supervised approach for the same problem. The work is 
particularly interesting, since the traffic constituting the dataset must not be completely labelled (i.e. only a 
portion of the dataset must be manually labelled as DDoS traffic). The authors first use two different 
clustering algorithms (agglomerative clustering and k-means with feature extraction via principal 
component analysis) to analyze the traffic of unknown origin, thus obtaining a fully labelled dataset. Then, 
they evaluate the performance of three different supervised machine learning algorithms (KNN, SVM and 
RF), with the best performing one being the random forest with an accuracy of 96.6%. 

The other strategy typically adopted to counter DDoS attacks consists in the identification of the Command 
and Control (C&C) channel, which the owner of the botnet (or botmaster) establishes with the zombies to 
control them, for example to coordinate an attack against a specific target. These types of controls are 
especially interesting on the edge network appliances. Occurrences of this kind of traffic clearly indicate 
the presence of infected devices on the network, so the network administrator can take the appropriate 
actions (e.g. detect and remove malware from the infected devices). Gadelrab et al. introduced BotCap 
[Gadelrab 2018], an approach to identify HTTP-based botnet C&C channels with machine learning 
algorithms trained on statistical features of the traffic. In particular, the authors created a dataset by running 
six different botware families (all employing HTTP C&C channels) in a controlled scenario, capturing the 

 
 

4 See https://securelist.com/ddos-attacks-in-q1-2020/96837/. 

https://securelist.com/ddos-attacks-in-q1-2020/96837/
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generated traffic and consequently analyzing it to extract 55 features, comprising, for example, statistics 
about duration of connections and the amount of exchanged traffic. The resulting dataset has been used to 
train three different SVM-based algorithms, with the best one obtaining a 95% F1-score in identifying HTTP 
C&C channels. Hoang and Nguyen [Hoang  2018] have proposed a different approach to tackle the same 
problem, based on the identification of the DNS requests submitted by zombies to obtain the IP address of 
the C&C server. Such requests are necessary, since botmasters typically change over time their IP in order 
to avoid detection. In particular, they analyzed both benign (top 30000 domain names ranked by Alexa) and 
botnet domain names (created by the Conficker and DGA botnets), then they extracted 18 features obtained 
from various text characteristics of the domain names (e.g. bi-gram and tri-gram clusters, vowel distribution) 
to generate three datasets, with a varying ratio between benign and botnet samples. The authors used these 
datasets to train four different machine learning algorithms (kNN, DT, RF and Naïve Bayes), with the best 
performing one being the fandom forest model, with an average accuracy of about 90% on the three datasets. 

2.1.3 Malware 
Malware (malicious software) is any kind of software designed with the objective of harming the devices 
on which it is installed (i.e. infected by it). Indeed, malware applications are one of the most longstanding 
menaces in the IT scenario. In fact, the first known malware dates to 1988 [Orman 2003]. While in the early 
days such programs were written mainly for fun or as experiments, nowadays malwares are typically either 
financially motivated or engineered for political and industrial espionage. The most common typologies of 
malware are: 

● ransomware (or cryptolockers): after infecting a device, these viruses encrypt all or some data 
present on a victim and then ask the device owner to pay a ransom (to be paid with hard-to-trace 
cryptocurrencies such as Bitcoin), in order to obtain the encryption key and regain access to his 
data. A notable example is the WannaCry worm, which encrypted data on more than 200000 devices 
in 150 countries [Mackenzie 2019]. 

● cryptojackers: this kind of malware hides a cryptomining process on the infected device, using the 
computational power of the latter to mine new cryptocurrency units for the malware owner. This 
may take a high toll on the performances of the infected device, may cause an early obsolescence 
and a reduced battery life in the case of mobile devices. Cryptojacking infections started in 2017 
and these kinds of malwares are among the ones spreading with the highest rate [Liebenberg 2018]. 

● trojans (short for trojan horse): these viruses are typically downloaded and executed on the target 
machine unknowingly by the user, for example by misleading him into opening an apparently 
legitimate e-mail attachment. While the payload of this kind of malware can be virtually anything, 
usually they are used as vectors to gain complete remote control of the infected machine (remote 
access trojans), either for financial motives (e.g. Metamorfo [Szeles 2020], a trojan written to obtain 
access to the user’s bank account) or to gain illicitly information (e.g. industrial espionage or state 
surveillance). 

In general, given the dominant position in the market of operating systems, malware have traditionally 
targeted devices running Microsoft Windows (in 2018 still half of the new malware targeted this OS). Still, 
there is an increase in diffusion of malware targeting Android mobile devices and for the Apple MacOS 
operating system [Kujawa 2020]. 
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Anti-virus software usually resorts to two main strategies to identify the presence of malware on the 
protected devices: 

● signature (or definition): a unique identifier (typically obtained with an hash or a custom algorithm 
executed on the malware’s binary) of a specific malware or of a specific portion of it (e.g. a function 
or method); anti-virus programs using this kind of strategy analyze continuously the protected 
system, searching processes in execution that match signatures of known malware; 

● behavioral analysis: potentially malicious software is executed in a virtual and controlled 
environment (sandbox), to analyze the possible outcomes of its execution on the main OS of the 
device, trying to identify typical behaviors of malware (e.g. replication in different locations of the 
file system, attempts of spreading via network interfaces, encryption of the files on the device). 

Given the importance of this menace, a lot of effort has been put in researching new and more effective 
ways of identifying malware. In particular, the application of machine learning techniques has been found 
to be promising in this area. Regarding the signature-based approach, a recent survey by Shalaginov et al. 
[Shalaginov 2018] show that the most commonly used features, employed to train machine learning 
algorithm for this purpose, are the raw representation of bytes of the executable (e.g. for randomness 
analysis, which may indicate the presence of encrypted malicious content), the disassembled binary code, 
and, regarding the Windows portable executable format (an executable format frequently used to distribute 
malwares), the information contained in the file header. 

Another interesting work using the same approach is the one by Ma et al. [Ma 2019]. The authors focused 
on Android malware, using a collection of more than 10000 Android malwares (obtained from the Android 
malware dataset [Jang 2017]). They built a malware detection framework based on three machine learning 
algorithms. They extract API calls from the malware artifacts and correlated them to create three datasets, 
based on the presence of certain API calls known to be commonly used by malware, the frequency of these 
calls and their sequences. The first two datasets are used to build classical decision tree algorithms. The 
third dataset is definitely more interesting, since the API (Application Programming Interface) sequences 
are modeled as time-series, and used to train a long-short term memory RNN (Recurrent Neural Network), 
a neural network able to classify sequences of events (used for example for financial predictions). The 
framework proves to be very effective, with a detection accuracy of more than 98%. 

2.1.4 Conclusion 

Machine learning approaches can be successfully used to automatize various critical tasks. This trend seems 
to be exponentially growing in the last few years and it will most likely continue in the foreseeable future.  

Machine Learning (ML) models are continuously proving to be very effective for coping with cyberthreats 
in a timely and accurate manner. Given the astonishing results obtained in the last few years it seems sensible 
that various industries will integrate even more ML algorithms in their software and hardware appliances. 
In fact, several existing anti-virus frameworks started to adopt these methods. For example, Microsoft 
launched recently Advanced threat protection, an extension of its Defender anti-virus software that uses a 
combination of big-data and machine learning techniques to improve its malware detection capabilities. 
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Apart from direct threat detection, these approaches can also be used to (semi-)automatically configure 
WAFs, with less space for human error. Many industry leaders in the cybersecurity fields are starting to 
integrate such approaches in their firewalls, such as Fortinet5 and Alibaba Cloud6.  

2.2 Machine learning under the restriction of GDPR 

While the applications of machine learning seem to be endless, many countries have started to restrict and 
regulate the handling and usage of data and therefore also the field of application by data protection 
regulations such as the EU GDPR [GDPR 2016]. Nowadays, many companies still struggle with the 
implementation and maintenance of GDPR-conform data handling, not only for cybersecurity related tasks 
but also for many other purposes. Especially in conservative markets such as for many finance applications, 
the usage of complex models or even the storage of related data is obviated [Guidotti 2018]. To fulfill the 
requirements of the GDPR on the one hand and to enter new fields of application on the other hand, a variety 
of new technologies that enable privacy protecting machine learning have emerged during the recent years. 
Before the potentially game changing technologies are presented, a brief look is taken into the GDPR and 
four major requirements are elicited: 

• explainability: the first requirement in designing ML models is to make the models explainable 
[Goodman 2017]. Following Article 13 and 14 of the GDPR a user has the right to explanation if 
decision making or profiling is involved. Then the controller must provide information in an 
understandable way that the user can assess a fair and transparent processing of the model’s logic. 
This leverages the tradeoff between simple easy understandable so called “white-box models” that 
often generalize better with a lower accuracy and more complex so called “black-box models” that 
can achieve a higher accuracy but are much more difficult to explain.  

• non-discrimination: the second requirement, the right to non-discrimination, can be defined as the 
absence of unfair treatment of a natural person based on the belonging to a specific group, such as 
religion, gender or race [Goodman 2017]. In relation to machine learning, this stands in opposition 
to the concept of allocating individuals in different classes on basis of a huge amount of data, 
collected from society. Reasoned by the fact that the society exhibits per definition exclusion, 
discrimination or inequality, bigdata can only be treated as fair, if these differences in treatment are 
detected and balanced during the development of the ML model.  

• the right to be forgotten: the third requirement is the user’s right to be forgotten what implies the 
deletion of instances from an existing dataset [Yang 2019]. This leads to the question whether it can 
use a ML model that has been trained on deleted or withdrawn data. Therefore, ML model should 
be somehow adoptable during their lifetime.  

• data security: the fourth requirement is the data security. Personal data that is “any information 
relating to an identified or identifiable natural person” (GDPR article 4) has to be protected against 
loss, damage and unauthorized processing [GDPR 2016]. Data from different locations or 

 
 

5 See https://www.fortinet.com/products/web-application-firewall/fortiweb. 
6 See https://www.alibabacloud.com/product/waf. 

https://www.fortinet.com/products/web-application-firewall/fortiweb
https://www.alibabacloud.com/product/waf
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companies cannot easily combined to one big dataset because collected data must be restricted to a 
defined purpose [Yang 2019].  

While the above-mentioned requirements restrict the application of classic ML approaches although they 
aim to protect the data of a user, new technologies have evolved that try to guarantee and fulfill the above-
mentioned challenges. 

2.2.1 Privacy preserving machine learning 
To protect ML models from a variety of attacks that try to reveal the data, training features or the algorithm 
itself, a variety of countermeasures have evolved during the recent years. These techniques in general, can 
be summarized under the term of Privacy Preserving Machine Learning (PPML). While most techniques, 
were not invented in the recent years, their application to the field of machine learning is new and most of 
them are not well established or applied. Examples for this are cryptographic protocols to encrypt data that 
is submitted from multiple parties to one single database, or homomorphic encryption that enables simple 
computation tasks with encrypted data [Al-Rubaie 2019]. 

Distributed learning was designed for problems that a single machine cannot handle in enough time, due to 
the size of the data or the complexity of the model [Li 2014]. While distributed machine learning is widely 
used nowadays to address performance issues, current methods such as federated learning focus also on 
privacy protection. Generally, federated learning is expected to break the barriers between data sources 
while the leakage of data is prevented. The idea of federated learning was first proposed 2017 by Google 
and aims to build a ML model based on datasets that are distributed across multiple devices whereby the 
data is not merged to an overall dataset. There are different approaches, such as horizontal, vertical federated 
learning and federated transfer learning [Yang 2019].  

One of the potentially most relevant fields in the future is the domain of medicine. While noticeable success 
in the training of Deep Neuronal Networks (DNN) has been achieved, AI for reliable clinical decision 
support, requires larger amounts of imaging and clinical data. These data cannot be achieved in voluntary 
clinical studies among a small number of institutions that are not well geographically diversified. As 
described above, this problem is leveraged by regulations such as the GDPR or the United States Health 
Insurance Portability and Accountability Act (HIPAA) that strictly regulate the exchange and storage of 
personal data [Kaissis 2020]. This is where federated learning comes in, ensuring data protection on the one 
hand and the usage of data among institutions on the other hand. 

Another potential field is the domain of banking. In the prediction of credit risk, a large variety of factors is 
combined. Although efficient intra-bank machine learning systems exist, a huge gain of efficiency can be 
expected for inter-bank models. Federated learning can enable banks to share information about the credit 
risk of their customers while the privacy relevant data remains locally stored and is not visible for other 
banks [Kawa 2019].  

Although a lot of advantages can be expected, it is not easy to distinguish between federated learning as 
privacy protecting or privacy vanishing. e.g. in smart retail federated learning can be used to break the 
barrier between different data holders. This enables companies to combine financial data from banks 
disclosing the willingness to pay, personal preferences from social products characteristics from e-shops 
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[Yang 2019]. Instead of using this information for personalized advertising, this could be also used for 
perfect price discrimination. 

While the principle of differential privacy is not new, its relevance has significantly increased during the 
recent years. In general, differential privacy tries to disguise certain rare attributes by adding noise or using 
generalization [Yang 19]. The aim of this is that a single user cannot be identified by using other studies, 
additional datasets or further information sources [Dwork 2014]. What makes this technology relevant for 
the future is its usage in combination with other new emerging technologies. E.g. Yang et al. [Yang 2018] 
propose a multifunctional data aggregation method with differential privacy based on a fog computing 
architecture. They point out that one advantage of differential privacy compared to homomorphic encryption 
or cryptographic protocols are the support of a variety of statistical aggregation functions and the low 
computational costs. Chamikara et al. [Chamikara 2019] claim that current privacy-preserving deep learning 
approaches are build up on server centric approaches that cause high processing costs. To overcome this, 
they propose their new local differentially private algorithm LATENT that is based on adding a 
randomization layer before the data of a user is used to train a ML model. Another approach comes from 
Lecuyer et al. [Lecuyer 2019] who present the defense PixelDP that is a connection of robustness against 
adversarial examples and differential privacy that scales to large networks and datasets.   

Like differential privacy, the idea of secure MultiParty Computation (MPC) is not new. By involving 
multiple parties that each only know their input and output this concept aims for zero knowledge [Yang 
2019]. Reich et al. [Reich 19] have identified a research gap in the privacy preserving solutions for text 
classification. Their proposed method is based on MPC and is used to classify hate speech against women 
and immigrants. They claim that their model has the advantage that the ML model does not learn anything 
about the text and the author does not learn anything of the model. In the past, a tradeoff in MPC between 
efficiency and security existed that caused less secure models so called “semi honest” models. Therefore, 
Chen et al. [Chen 2019] tested the SPDZ7 framework with simple applications such as linear and logistic 
regression, with increased security and performance. They claim that future research topics in this 
technology are the application to more complex models while limitations in computational power must be 
overcomed.  

2.2.2 Explainable machine learning 
As mentioned above, when designing a machine learning model, good scores in an evaluation metric are 
not enough to evaluate the performance of an algorithm. With the data protection regulations, algorithms 
have also to be designed in a way that they are explainable and non-discriminatory [Hall 2018]. Therefore, 
methods for explainable machine learning will be important in the near and long future. Model specific 
methods give insights in how a specific model makes decisions and often try to explain the black-box.  These 
methods can often not be compared over different models. In the opposite to this, model agnostic methods 
give insights into a model without understanding how the model works. The model is treated as a black-box 
and the relation between input and output is analyzed. One of the most common methods are Local 

 
 

7 SPDZ is a curious acronym for speedz. 
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Interpretable Model-agnostic Explanations (LIME) [Ribeiro 16] and is constantly improved, e.g. by Visany 
et al. [Visani 2020] who aim to increase the stability to make the explanations more reliable.  

To be precise, explainability has significant relevance for the future because nowadays many models lack 
in providing enough explainability to the user of an application in the real world [Bhatt 2020]. This demand 
is leverage by an increasing complexity and distribution of ML models such as with adversarial and 
federated learning. Besides this, the relevance of explainable ML is also increasing in the field of natural 
sciences where ML is utilized to achieve insights in observational or simulated data [Roscher 2020]. 

2.2.3 Conclusion 
The GDPR has started to affect not only our daily lives, but also how machine learning and artificial 
intelligence models are trained and used by the industries. The security of the data and the ML model itself 
as well as its explainability are most relevant. While trends such as edge computing in combination with 
federated learning approaches or differential privacy are likely to increase the security of users but also 
come with a significant increase in complexity. These technologies are most likely to help in future to 
overcome the tradeoff between complex models with high accuracy and secure models that can be explained 
easily. 
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3 AI for adversarial purposes 

This chapter provides some insights into the use of Artificial intelligence (AI) for adversarial purposes. 
While Section 3.1 investigates the overview of existing adversarial attacks, threat models, applications, and 
future trends in AI itself, Section 3.2 provides insights into the application of AI for social engineering. 
Besides these two selected topics, many further possibilities exist how AI can support attacks on 
cyberphysical systems. For further reading, we refer to a recent survey of Kaloudi and Li [Kaloudi 2020]. 

3.1 Adversarial AI 

AI has nowadays become quite prevalent, thanks to its intrinsic automation features. While the adoption of 
artificial intelligence and corresponding deep learning techniques can help to handle a diverse number of 
complex tasks such as image processing [Savadjiev 2019], natural language processing [Wen 2019], 
autonomous cars routing [Lazar], etc., it is of particular importance to ensure the security and robustness of 
the deployed algorithms [Wanga 2019]. The aim of this topic is to provide a high-level introductory 
overview of adversarial AI. We also inspect the existing threat models, examine the adversarial applications 
and provide some insights into the future trends of challenges associated with adversarial AI. 

Machine learning models – as a subset of AI – are constantly evolving and have had a significant impact on 
various application domains. However, there are serious concerns regarding the reliability, trustworthiness, 
and security aspects of these models [Wanga 2019]. More specifically, previous research has shown that 
most of the advanced machine learning models are vulnerable to adversarial attacks [Ma 2020, Finlayson 
2019, Zhou 2019]. To put it simply, as shown in Figure 1, in a simple adversarial attack the adversary 
perturbates the original samples in such a way that the changes are almost undetectable to the human eye. 
The modified samples are then called adversarial samples, and when submitted to a classifier they are 
misclassified, while the original one is correctly classified. As an example, a given supervised machine 
learning classification algorithm might be attacked through discovering the minimum changes that should 
be applied to the input data leading to a different classification outcome. A typical example is the computer 
vision systems deployed within autonomous cars where a negligible change in a stop signal that is 
completely unnoticeable to the human eyes may cause such cars to identify stop signals as 45 mph signals 
[Eykholt 2016].  

 

Figure 1: An overview of adversarial AI. 
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There are three main threat models for adversarial attacks, namely the black-box, grey-box, and white-box 
models (see Figure 2). In the black-box model, an adversary does not know the structure of the target 
machine learning algorithm or its parameters. However, it can communicate with the algorithm to query the 
predictions for specific inputs. Such queries may impose a considerable burden on the overall performance 
of the algorithm. As such, the number of queries is considered as an important criterion for the efficiency 
of the attack. As for the grey-box model, it is assumed that the adversary has a kind of understanding of the 
overall architecture of the algorithm. However, it does not have any information about the detailed 
parameters such as the internal weights in a neural network. Like black-box model, in the grey-box model 
the adversary can communicate with the algorithm. Compared to the black-box model, a grey-box adversary 
always performs better than the black-box adversary. The white-box model, on the other hand, is usually 
referred to as the strongest adversary as it has a comprehensive understanding of the target model, including 
its respective parameters. To be more precise, the adversary can adapt the attacks and directly craft 
adversarial samples on the target model.  

 

Figure 2: Threat models within adversarial AI. 

3.1.1 Network security 
The use and development of machine learning techniques in cybersecurity related areas has become quite 
prevalent these days. As an example, machine learning techniques are nowadays widely used in malware 
classification and intrusion detection systems due to the ever-evolving nature of threats within such systems. 
In [Grosse 2016] the authors demonstrated the applicability of efficient adversarial sample crafting attacks 
for neural networks used for classifying malware. The experimental results indicated that the conducted 
attacks can lead to a misclassification rate as much as 80%. This highlights that adversarial crafting is a real 
threat in security-critical domains such as malware detection. Similarly, the authors in [Huang 2018] focused 
on the same problem but with a focus on intrusion detection systems. They analyzed software defined 
networking-based intrusion detection systems and showed how adversarial attacks can exploit the 
vulnerability of several deep learning classifiers in this area. Through experimental results, the authors 
concluded that the conducted attack can provide an accuracy drop of about 35%.  
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3.1.2 Natural language processing 
Researchers in [Liang 2017] demonstrated that text classification algorithms can be easily fooled through 
crafting text adversarial samples. Similarly, the authors in [Hosseini 2017] showed the applicability of 
crafting adversarial text samples by modification of the original samples. The experimental results obtained 
from movie reviews on IMDB and tweets available on Twitter showed the efficiency of conducted 
adversarial attacks. The authors in [Samanta 2018] examined the vulnerability of Google’s Perspective API 
(Google’s Perspective API uses machine learning models to score the perceived impact a comment might 
have on a conversation) against the adversarial examples. Through multidimensional experiments, they 
showed that an adversary can deceive the system by misspelling the abusive words or by adding 
punctuations between the letters.  

3.1.3 Computer vision 
The authors in [Sharif 2016] proposed techniques to generate adversarial attacks in facial biometric systems 
allowing an attacker to evade recognition or impersonate individuals. Using pair of eyeglass frames worn 
by the attacker, the eyeglasses allow the attacker to evade being recognized or to impersonate another 
individual. The authors in [Zhou 2018] focused on the same problem. They proposed new attack scenarios 
against face recognition systems showing that face recognition systems can be bypassed or misled. It is 
shown that such attacks can not only deceive surveillance cameras, but they can also impersonate the victim 
and bypass the face authentication system, using only the victim’s photo. 

According to [Dolhansky 2019], from Facebook’s AI Red Team, deepfakes, that is artificially generated 
images and media of a person, can lead to intimidation, harassment, or manipulation of financial systems or 
elections. Up to them, key driving methods for deepfakes such as face swapping and image manipulation 
are state-of-the-art techniques from computer vision and deep learning. In order to deal with this massive 
problem and to find adequate countermeasures, the Deepfake Detection Challenge (DFDC) was announced 
in 2019. The power of state-of-the art Generative Adversarial Networks (GAN) that produce photo-realistic 
images from randomly sampled codes is shown by [Shen 2020]. Shen et al. trained a model called 
InterFaceGAN that is capable to interprete semantics enabling them to manipulate facial attributes precisely 
with any fixed GAN model. 

3.1.4 Conclusion 
AI-driven technologies have become an indispensable part of our lives. Thanks to the ever-evolving nature 
of machine learning techniques, they are now increasingly applied in various applications. However, serious 
concerns have been raised about the security and reliability issues of machine learning models. As discussed 
throughout this report, a great number of advanced machine learning models are vulnerable to adversarial 
attacks. Previous studies have shown that such attacks can be efficiently applied to many application 
domains ranging from computer vision to natural language processing. As such, it is of importance to initiate 
calls for action considering the evolving nature, likelihood, criticality, and impact of such attacks through 
providing a comprehensive roadmap considering the future challenges associated with adversarial artificial 
intelligence.  

There exist multiple challenges associated with the future trend of adversarial AI. To avoid or at least 
minimize the negative effect of adversarial attacks on available AI-driven technologies, it is highly crucial 
to provide a holistic roadmap that will tackle the following challenges. 
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Explainability refers to a set of methods and techniques in the application of AI such that the generated 
results and the decisions made by the solution can be understood by humans. Although explainable AI (see 
also Section 2.2.2) can help to explain the knowledge within an AI model and reason about what the model 
acts upon, the information that it reveals by explainability techniques can be used by adversaries to conduct 
adversarial attacks [Arrietaa 2020]. 

It has been shown that adversarial examples generated against an ANN can fool the same networks trained 
by different data sets, with different architectures, and even other classifiers trained by different machine 
learning algorithms [Papernot 2016]. Transferability can even be more critical when it comes to black-box 
models since in black-box models the attacker does not have access to the architectural details of the model 
and the training data set [Yuan 2019].  

In the report “Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation” [Brundage 
2018], the authors analyzed various scenarios where AI techniques can be used by an attacker and provided 
some suggestions to mitigate such potential issues. The researchers have also shown that most of the existing 
defensive mechanisms are suffering from robust, granular, and thorough evaluation. This is because, 
although such defensive mechanisms can defend against a particular attack, they are extremely vulnerable 
to slight changes in the attack, and therefore, they become inefficient. As such, a holistic evaluation of 
defensive mechanisms can help to make the defensive mechanisms not only defending a certain attack, but 
also similar attacks resulted from slight changes within the attack’s architecture. 

3.2 Social engineering attacks 

Social engineering is the clever manipulation of the human tendency to trust. If the technical security of 
most critical systems remains high or even increases, attacking the systems by social engineering is getting 
more and more attractive. While the amount of social engineering attacks and the damage they cause rise 
every year, the defenses against social engineering do not evolve accordingly [Schaab 2016, Schaab 2017]. 
We sketch in this section how AI will further improve attacks on human beings. 

3.2.1 AI-supported vishing 
Recent efforts in automating tasks such as bookings via phone led to systems like Google Duplex8, which 
conduct natural conversations, allowing people to speak like they would with another person and not with 
a computer. While the main goal of Google Duplex is to automatize bookings for e.g. a hairdresser or a 
restaurant, naturally these enhanced capabilities can also be used to mislead people. Spam over Internet 
telephony (SPIT) is an already existing phenomena which is regulated, e.g. by the federal Telephone 
Consumer Protection Act of 1991 (TCPA) [Telephone 1991]. But legal actions are not enough and lead to 
some effort to technically counter robocalls [Gallagher 2020].  

Furthermore, with additional information, i.e. voice samples, the attacker can make use of AI to imitate 
someone’s voice, improving the setup for fraud [Bendel 2019] and vishing (voice phishing) attacks. 

 
 

8 See https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html. 

https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
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3.2.2 AI-supported phishing 
AI is, unfortunately, also beneficial to phishing attacks in a couple of different ways. Artificial intelligence 
can support large scale or spear-phishing attacks. Besides trying to overcome spam filters by varying the 
accompanying text or malware, AI has helped in the creation of new phishing URLs based on the patterns 
of the most effective URLs in previous attacks [Bahnsen 2018], the creation of fake reviews to improve the 
credibility of a site or an account [Yao 2017], and to personalize phishing message to improve success of 
spear-phishing attacks [Seymour 2016]. Furthermore, recent work on language models, such as GPT-3, 
shows that they can achieve good results on tasks as translation, question-answering, and even on several 
tasks that require on-the-fly reasoning or domain adaptation [Brown 2020]. GPT-3 is a text-generating 
program from OpenAI, which recently gained huge attention in the social networks and on media9,10. Thus, 
it is easy to imagine that high quality text generation AI can be used for the content of phishing attacks. 

With humans being unable to evolve as fast as the machine learning discipline, this seems to be an arm race 
that humans can only lose, particularly given the amount of spam mails already circulating. 

3.2.3 Automated information gathering 
Numerous tools exist for intelligence gathering for social engineering attacks [Beckers 2017]. Attackers 
already have a wide range of tools available and most of them do not require high technical skills. With the 
rise of AI, it can be expected that AI can not only assist in the attacks itself by vishing (see Section 3.2.1) 
or phishing (see Section 3.2.2), but also on the level of information gathering. While it is still a challenge to 
connect existing data meaningful with other databases [Pape 2017] or to detect sensitive information in 
unstructured text [Tesfay 2016], the use of AI in this area is on the rise. But AI can not only support 
automatic data gathering on the fine-grained data collection itself. AI has also been successfully used at 
higher information levels, e.g. to select the most valuable targets for phishing messages [Seymour 2016] or 
to interpret feelings and emotions [McStay 2018]. The exploitation of the information collection processes 
can also benefit from techniques developed by digital markets [Darmody 2020] to manipulate customers. 

3.2.4 Conclusion 
While AI and ML are usually seen, at least from the researchers point-of-view, as powerful tools for the 
defenders, they can also simplify the attacker’s life. 

In the future, we can expect more automated phishing and in general social engineering calls, because the 
described machine learning and AI capabilities not only lead to an increased quality of the attacks, are harder 
to spot by countermeasures and for the humans, but also reduce the effort for the attacker. AI trained to 
gather some information instead of assisting humans in making appointments for the hairdresser or 
restaurants might also be a severe threat in the future. 

 

  

 
 

9 See https://www.wired.com/story/ai-text-generator-gpt-3-learning-language-fitfully/. 
10 See https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3. 

https://www.wired.com/story/ai-text-generator-gpt-3-learning-language-fitfully/
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
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4 Zero-trust security systems 

For years, defining a network perimeter and adding defense layers to keep threats out has served companies 
well. Nowadays, the evolution of cyberattacks and the borderless nature of companies’ networks lead to 
boundless points of exposure that could not be confined with a perimeter-based approach. With the 
introduction of new paradigms and technologies such as cloud computing, IoT devices, it has become less 
and less clear where the edge of a network ends. 

Because of these factors, perimeter-less security is gaining momentum starting with the Zero-Trust Security 
(ZTS) model. In a ZTS model, any device, user or application, regardless of their position within the network 
perimeter, must be verified and authenticated. The integrity of the actors accessing the infrastructure as well 
as their identity is pivotal in this model. Micro-segmentation is another keyword within the scope of ZTS. 
This means that it is possible to create different network segments (not related to the network perimeter) or 
“trust zones” in which we could enforce different access policies to get the resources. The granularity of the 
micro-segmentation is arbitrary and depends on the sensitivity of the data. 

This evolution in terms of security model as well as the requirements for new device integrity check and 
authentication mechanism, lead to the adoption of new emerging security technologies to create ZTS 
systems that are safe and, hopefully, tamper-free. 

4.1 Trusted computing     

Trusted Computing (TC) has been introduced by the Trusted Computing Group11 (TCG) to enhance trust 
and security of modern information and communication technologies. The core component of the TC idea 
is the Trusted Platform module (TPM), a tamper-resistant chip designed to resist against software attack and 
mitigate the hardware ones. TPM in combination with some ad-hoc software components can provide a set 
of security mechanisms such as memory curtaining, protected execution, secure I/O, sealed storage, 
platform measurement and remote attestation. As pointed out by [Yan 2020], in recent years the TC has 
evolved thanks to efforts coming from both academia and industry. 

In its latest version, the TPM 2.0 introduces new features that make its adoption and usage more effective 
with respect to its predecessors. It supports a wide range of hash and asymmetric algorithms as well as 
various block ciphers and also a flexible mechanism of authorization that allows to grant access to hardware 
and software resources based on the state of some components within the TPM (i.e. specific values of the 
internal TPM registers). 

Intel TXT, namely LaGrande technology, in conjunction with a TPM provides a hardware root of trust 
available on Intel server and client platforms that activate the measured launch and protected execution 
capabilities12. By using these two paired technologies, starting from the BIOS itself, at each stage of the 
launch process, cryptographic hashes are measured and compared with the ones stored in the TPM to verify 

 
 

11 See  https://trustedcomputinggroup.org. 
12 See https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04282020-draft.pdf. 

https://trustedcomputinggroup.org/
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04282020-draft.pdf
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the system integrity [Shepherd 2016] from its very boot. Deviations from the expected configurations result 
in an untrusted platform state. 

4.1.1 Adoption in cloud environments 
The greatest impact so far of the TPM technology is over cloud computing, especially thanks to its ability 
to provide a (partially) hardware-based remote attestation (RA) procedure, which allows to authenticate 
remote entities (e.g. infrastructure nodes) and measure their integrity. When an integrity breach is detected, 
several reactions can be performed such as stopping the compromised virtual machine and/or sending alert 
messages to the system administrators. Apart from verifying the genuineness of the physical host, each VM 
also have its own virtual TPM (vTPM), a virtual instance of the TPM providing all its functionalities (i.e. 
integrity measurement of components inside the VM).  

An excellent report regarding the most recent applications of the TPM, its challenges and research question 
in the cloud environments is provided by [Hosseinzadeh 2020]. 

4.1.2 Criticalities 
Despite the consistent adoption of TPM-related technologies in cloud environments, there is still some 
progress to make concerning the aim to mitigate physical attacks and the certification process of these 
devices. 

A recent study [Moghimi 2020] depicts how it is possible to exploit secret-dependent execution times during 
digital signature generation to recover private keys protected by the TPM. The attack involves the generation 
of signature based on elliptic curves (e.g. ECDSA and ECSchnorr). The chips affected by this vulnerability 
were both firmware and hardware based. The study not only shows that the TPM in this case is vulnerable 
to system adversaries but also to remote attacks, making the applications using the TPM less secure than 
the ones without it. This have been demonstrated as a result of an attack performed against a StrongSwan 
IPsec VPN which uses the TPM to generate the digital signature for authentication. 

The continuous progress related to quantum computing technologies also represent a future threat to public-
key cryptography used extensively by the TPM. The FutureTPM13 project aims to design a Quantum-
Resistant TPM. This involves designing and developing algorithms that could be integrated within a TPM 
and do not suffer from quantum-related vulnerabilities. As reported in the paper [Fiolhais 2020], some 
efforts in exploring the integration of new cryptographic primitives within the TPM have been already made. 
This work discusses a new software TPM architecture which exploits post-quantum cryptography14 
algorithms (e.g. Dilithium and NTTRU) and maintains much of the same infrastructure of the TPM 2.0. 

 

4.1.3 Conclusion 
In order to make simpler and even wider the adoption of TPM as a solution to enhance security of the IaaS 
infrastructure, more flexible solutions must be adopted. For instance, a middleware capable of interacting 

 
 

13 See https://cordis.europa.eu/project/id/779391. 
14 See https://csrc.nist.gov/projects/post-quantum-cryptography. 

https://cordis.europa.eu/project/id/779391
https://csrc.nist.gov/projects/post-quantum-cryptography
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with both hypervisors and VMs and creating a software layer that allows a simpler integration of the TPM 
in a cloud environment is required. Remote attestation of virtual machines is still not fully supported. 
Different mechanisms exist, such as the vTPM (see Section4.1.1), but they still lack a proper method to bind 
the vTPMs to the physical TPM.  

Furthermore, the use of this technology has a heavy toll on the performance of a machine. The RA operations 
are particularly expensive in terms of execution time. This situation is exacerbated when dozens of VMs are 
deployed on a single node and all of them may require the use of these operations periodically. This 
challenge still has no real solution and needs to be addressed in order to deploy the TPM technology at full 
scale. 

In addition, due some new side-channel attacks, issues in the validation and certification process of devices 
and the advent of quantum technologies, the security of the current TPM-enabled devices is at risk. 

The TPM is a promising technology, but, as we discussed, it has several limitations and drawback. It is 
foreseeable that soon we will see a new version of this flexible chip that will increase even more its adoption, 
especially in cloud environments. 

4.2 Trusted execution environments 

A Trusted Execution Environment (TEE) is a secure area or enclave protected by the system processor. It 
has been introduced as a security technology in mobile execution environments. TEE holds sensitive data 
such as cryptographic keys, authentication strings, or data with intellectual property (i.e. digital right 
management) and privacy concerns. It is also possible to execute code and operations within TEE 
concerning this information. Thus, it is not necessary to let this sensitive data leave the TEE. 

A typical TEE architecture15 (see Figure 3) is composed of two different environments: a rich execution 
environment (REE) and a trust execution environment (TEE). The implementation of the two environments 
(REE and TEE) depends on the specific technology and thus on the TEE provider, but the GlobalPlatform 
specifications16 require a hardware-based separation between REE and TEE. The REE contains the rich OS 
(e.g. a traditional Android) which allows the user to run a plethora of (rich) applications in an “untrusted 
environment”. The TEE is instead an environment in which it is possible to run Trusted Applications (TAs) 
that leverage hardware secure resources provided by the platform (e.g. storage, keys and biometric sensors) 
and, as the specifications suggest, are completely separated from the other environment. When an 
application in the REE needs to use a trusted application service, it could send commands and requests to 
the specific TA through TEE client API. 

 
 

15 See https://www.securetechalliance.org/publications-trusted-execution-environment-101-a-primer/. 
16 See https://globalplatform.org/specs-library/?filter-committee=tee. 

https://www.securetechalliance.org/publications-trusted-execution-environment-101-a-primer/
https://globalplatform.org/specs-library/?filter-committee=tee
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Figure 3: TEE architecture. 

A TEE must be compliant to the following security principles17: 

• code integrity must be verified at each stage of the boot process; 
• execution of sensitive code must be isolated from the rich OS by means of hardware-based 

techniques; 
• TAs must be isolated from each other; 
• secure data storage must be provided by the TEE; 
• a secure and privileged access to peripherals must be provided. 

TEEs are not confined to mobile devices. Different uses cases have been proposed regarding diverse 
execution environments such as IoT, fog computing and cloud computing. 

4.2.1 Intel SGX 
Intel SGX18 is a set of instructions which provides integrity and confidentiality for secure computations on 
systems where privileged software is potentially insecure. Security-sensitive code and data could be 
executed and operated into SGX enclaves. These enclaves are isolated and executed in protected region of 
the CPU. This technology provides also mechanisms to perform the remote attestation, where a remote 
provider could verify that an enclave is running on a real Intel processor and has not been tampered with. 

SGX is, however, vulnerable to a variety of attacks, mostly side-channel based. An extensive survey of SGX 
threats is available in [Nilsson 2020]. 

An attack, which depicts the improvements still required to meet the SGX objectives, is Plundervolt 
[Murdock 2020]. Plundervolt exploits the ability of modern Intel processors to dynamically scale their 
frequency and operating voltage to corrupt the integrity of Intel SGX enclave computations. More in detail, 
the authors observed that in many processors (e.g. Intel Core series) a privileged software interface is 
exposed to control these parameters. Because of this, a privileged adversary could exploit the CPU supply 
voltage and induce some targeted faults within the processor. In order to mitigate this attack, microcode 

 
 

17 See https://www.securetechalliance.org/publications-trusted-execution-environment-101-a-primer/. 
18 See https://software.intel.com/en-us/sgx. 

https://www.securetechalliance.org/publications-trusted-execution-environment-101-a-primer/
https://software.intel.com/en-us/sgx
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updates are required. In the past, there have been some other high-profile attacks with the same impact on 
SGX such as Foreshadow19 and in that case microcode patches were required to mitigate the attack. 

4.2.2 Keystone 
Beyond Intel SGX, a plethora of TEE technologies have been proposed and developed so far, such as ARM 
TrustZone20, AMD SEV21 and RISC-V Sanctum22. All of them suffer from considerable design limitations 
since they are tied up to the hardware platform. Keystone [Lee 2020] is an open framework carrying out the 
idea of customizable TEEs. It is built on RISC-V23 which is an open Instruction Set Architecture (ISA) 
based on RISC. 

RISC-V operates in 4 different modes (see Figure 4): 

• U-mode (user): for user-space processes; 
• S-mode (supervisor): for the kernel; 
• M-mode (machine): for accessing the physical resources (e.g. memory and devices); 
• H-mode (hypervisor): hypervisor-level isolation (not yet used in Keystone). 

 

Figure 4: Keystone architecture. 

According to [Lee 2020], a customizable TEE could be realized creating a trusted layer in-between the 
trusted hardware (i.e. RISC-V primitives such as memory isolation) and the untrusted OS (e.g. rich OS). As 
depicted in figure 4, this new layer is composed of two elements in Keystone’s Architecture: the Security 
Monitor (SM) and Runtime (RT). The SM leverages RISC-V Physical Memory Protection (PMP) to 
associate specific protections to different physical memory regions. This process creates security boundaries 
making each enclave able to operate its own isolated physical memory region. At this point the RT is isolated 
from the untrusted OS as well as the other enclaves. The RT manages the lifecycle of the code inside the 

 
 

19 See https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf. 
20 See https://developer.arm.com/ip-products/security-ip/trustzone. 
21 See https://developer.amd.com/sev/. 
22 See https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan. 
23 See https://riscv.org. 

https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.amd.com/sev/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://riscv.org/
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enclave, manages the memory, the services system calls and contacts the SM on behalf of the application. 
This modular approach enhances also the flexibility from the more traditional TEEs because the enclave 
programmer could optimize the applications independently from the other enclaves and not considering any 
a priori hardware design limitation. 

4.2.3 Conclusion 
TEE technologies are pivotal for implementing trusted systems in emerging execution environments (e.g. 
IoT, cloud and edge computing). Soon we will most like see a wider adoption of this kind of hardware-
based security controls. 

However, the current trusted execution environments are still suffering from several side-channel attacks, 
most notable the diffused Intel SGX technology (see Section 4.2.1). In addition, there it does not yet exists 
a proper standard specifying how a TEE should be implemented, thus tying the software solutions to a 
specific platform, thus, in turn, limiting their diffusion. A new technology, Keystone (see Section 4.2.2), 
promises a more flexible approach regarding the design and the adaptation of TEE in specific case scenarios. 
In this direction, both industry and academia are expending a significant amount of effort, especially towards 
research of new attack strategies and methodologies to validate existing solutions. 
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5 5G applications 

5G is not only the evolution of a current technology, but a disruption both in capacity and in the potential 
of the services that will be supported by it. The main characteristics of this technology are its low latency, 
its higher speed, between 10 and 250 times higher than the current 4G, its capacity for real-time data 
transmission and hyper connectivity. The potential of the 5G service, as well as the multiple applications 
that it can offer, are strategic enough to pose a medium-term scenario in which the European Union and 
member states can go from being in tow to leading the adoption of this technology, as well as the models of 
smart cities of the future. The European Commission (EC) has launched ambitious initiatives to support the 
cooperation among stakeholders in different Member States (MSs) for the development of 5G-enabled 
services. These initiatives include the 5G Action Plan24, which represents a strategic effort to align roadmaps 
and priorities for a coordinated 5G deployment across the EU. Furthermore, the 5G Infrastructure Public 
Private Partnership (5GPPP)25 is a joint initiative between the EC and EU industry (including 
telecommunications operators, SMEs or research institutes) to foster a common vision about 5G 
developments in the EU. Indeed, the development of 5G is widely considered crucial to ensure the EU's 
strategic autonomy.  

5G is meant to be the backbone over a wide range of essential services such as energy, transport, banking 
and eHealth. Therefore, we are facing a scenario, in which sensible infrastructures could be built on 
technologies outside the EU, about which the lack of control or guarantees begins to raise suspicions.  In 
this context, previous initiatives consider cybersecurity as a critical aspect for the deployment of 5G in the 
EU. In fact, it is expected that 5G technologies will play a key role in the Digital Single Market (DSM) with 
a strong impact in several scenarios, such as energy, transport, or health services. Furthermore, 5G will 
enable a more interconnected world, where vulnerabilities of 5G systems in a single Member State could 
affect the EU as a whole. Therefore, there is a need to promote collaboration and cooperation among 
countries to support a coordinated and secure deployment of 5G. To address such aspects, the EC launched 
the Recommendation “Cybersecurity of 5G networks”26 in 2019 to propose a set of concrete actions for 
ensuring cybersecurity of 5G networks, including the development of national risk assessment strategies of 
5G infrastructures. The main goal is to leverage national efforts to develop a coordinated EU risk 
assessment, in order to create a common toolbox of best risk management measures. As part of these efforts, 
the “EU coordinated risk assessment of the cybersecurity of 5G networks” report27  identifies the main 
threats, threat actors, sensitive assets, vulnerabilities and associated risks of 5G networks. This report was 
used together with a recent ENISA report on 5G threats28 to create the initial version of the mentioned 
toolbox29. By October 2020, the idea is that Member States should assess the effects of the recommendation 
report to determine whether there is a need for further action. 

 
 

24 See https://ec.europa.eu/digital-single-market/en/5g-europe-action-plan. 
25 See https://5g-ppp.eu/. 
26 See https://ec.europa.eu/digital-single-market/en/news/cybersecurity-5g-networks. 
27 See https://ec.europa.eu/commission/presscorner/detail/en/ip_19_6049. 
28 See https://www.enisa.europa.eu/publications/enisa-threat-landscape-for-5g-networks. 
29 See https://ec.europa.eu/commission/presscorner/detail/en/IP_20_123. 

https://ec.europa.eu/digital-single-market/en/5g-europe-action-plan
https://5g-ppp.eu/
https://ec.europa.eu/digital-single-market/en/news/cybersecurity-5g-networks
https://ec.europa.eu/commission/presscorner/detail/en/ip_19_6049
https://www.enisa.europa.eu/publications/enisa-threat-landscape-for-5g-networks
https://ec.europa.eu/commission/presscorner/detail/en/IP_20_123
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The ever-changing communications ecosystem is one of the drivers for 5G security. The current networks 
employ monolithic designs, where a single mobile operator controls all the infrastructure hardware and 
services. But, the 5G will be composed by many different specialized stakeholders that will provide end-
user network services [Chandramouli 2019]. For this reason, flexibility is one of the major 5G security 
requirements in order to support any efficient use-case, even those not conceived as of today. For example, 
security mechanisms for ultra-low latency critical verticals may not be appropriate for massive IoT 
applications with constrained end-devices that transmit delay-tolerant application data. 

5.1 Certification 

To ensure the development of secure 5G deployments, cybersecurity certification is essential to promote a 
transparent and trustworthy ecosystem of 5G devices and systems. The new regulation “Cybersecurity Act” 
entered into force in 2019 to create a cybersecurity certification framework for any ICT product, service or 
process. It complements the existing GDPR and NIS Directive to strengthen the cybersecurity in the EU. 
Indeed, it is expected that the Cybersecurity Act plays a key role in the development of 5G technologies. As 
described in the already mentioned Recommendation “Cybersecurity of 5G networks”, the realization of 
such framework is an essential tool to promote consistent levels of security and the creation of certification 
schemes adapted to 5G related equipment. Furthermore, the mentioned toolbox identifies the EU 
certification for 5G network components, customer equipment and/or suppliers’ processes as one of the 
main technical measures to strengthen the security of 5G networks. Toward this end, the realization of a 
cybersecurity certification framework is established as an essential issue to promote consistent security 
levels and the creation of certification schemes adapted to 5G systems across all the Member States. 

5.1.1 Certification schemes 
5G technology poses several challenges regarding cybersecurity certification. On the one hand, the high 
degree of heterogeneity of devices and technologies is conflicting with the need for objective comparisons 
regarding security aspects. On the other hand, due to the security dynamism, the certification approach must 
consider these changing conditions, in which the system will be operating. Therefore, agile self-assessment 
schemes and test automation environments will need to be created and evolved to ensure the security level 
is updated throughout the lifecycle. The borderless nature of the infrastructures and threats involved also 
mean that any vulnerability or security incident in one country can have disastrous consequences in the 
whole European Union. Therefore, the certification should consider interdependencies between components 
and cascade effects that may be produced consequently. Certain components of the 5G architecture are 
especially sensitive such as base stations or key technical management functions of the networks, 
representing a critical point for the security that must be highly considered during the certification.  
Furthermore, the 5G threat landscape combines traditional IP-based threats with the all-5G network, 
insecure legacy 2/3/4G generations and threats introduced by the IoT paradigm and the virtualization 
technology, creating security dependencies between different technologies. 

In this sense, technologies associated to the 5G such as the virtualization or the cloud are also on the focus 
of security assessment. In the US, the NIST published a guide of security for full virtualization technologies 
with security recommendations [Scarfone 2011]. ENISA also published a document with the current status 
of virtualization, regarding risks and gaps [ENISA 2017]. Recently, ENISA has received the role of working 
towards an EU cloud security certifications scheme. In this sense, the list of cloud certification schemes 
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developed by Cloud Selected Industry Group on Certification30 supported by the European Commission is 
being considered31. This list considers the TüV Rheinland Cloud Security Certification32, whose audit 
checks if the requirements and criteria for cloud services, based on standards and regulations, have been 
implemented and the quality of the processes. The Cloud Security Alliance Cloud Controls Matrix33 is also 
in the list. It provides different levels of security certification against a list of requirements for security 
assurance in the cloud. It considers self-assessment for organizations with a low/moderate risk profile (level 
1) and third-party attestation, certification and monitoring (levels 2, 3 and 4) for organizations with high 
risk profiles. EuroCloud StarAudit Certification34, from the list, provides certification to cloud services, 
providing trust to both the customer and the end user. The certification can vary depending on the 
requirements against the audit has been performed (3, 4 or 5-star Trusted Cloud Service). The list also 
includes the Code of Practice for Cloud Service Providers35 for remote hosted IT services (e.g., multi-
tenant). The certification can be based on self-assessment, with randomly auditing of the certificates or 
independent assessment performed by a third party. 

5.1.2 Conclusion 
Although currently there are many well-known cybersecurity certification schemes (e.g. Common 
Criteria36, Certification de Sécurité de Premier Niveau37 and Commercial Product Assurance38), none of 
them explicitly considers 5G and the challenges associated to this technology. Furthermore, the different 
schemes and standards regarding the 5G associated technologies are not enough to capture the complexity 
of the 5G and the security vulnerabilities that can arise because of the interconnectivity of the different 
components, technologies and paradigms.  In this direction, a common understanding of the threats, assets, 
attacks and risks of 5G systems is essential to create a certification scheme that could help to recognize the 
cybersecurity level of a certain 5G system across all the Member States. 

5.2 Security 

Due to the expected pervasiveness of 5G-related devices (e.g. embedded and IoT appliances), there is a 
strong need for a secure 5G applications. 

The 3GPP technical specification group of services and system aspects (TSG-SA) compiled a list of security 
requirements for 5G systems in [3GPP 2018]. These requirements emphasize the flexibility aspect of the 
system, designed to hold a wide range of different service requirements, from mobile broad-band services 
with data-rates up to several Gbps, to massive IoT deployments. For the latter, security is of utmost 
importance due to the relatively large life cycle of IoT devices, up to 10 years with one battery charge, 

 
 

30 See https://ec.europa.eu/digital-agenda/en/cloud-select-industry-group-certification-schemes. 
31 See https://resilience.enisa.europa.eu/cloud-computing-certification. 
32 See https://www.cloudwatchhub.eu/t%C3%BCv-rheinland-certified-cloud-service. 
33 See https://cloudsecurityalliance.org/artifacts/cloud-controls-matrix-v3-0-1/. 
34 See https://eurocloud.org/streams/staraudit/. 
35 See https://www.cloudindustryforum.org/content/code-practice-cloud-service-providers. 
36 See https://www.commoncriteriaportal.org/. 
37 See https://www.ssi.gouv.fr/administration/produits-certifies/cspn/. 
38 See https://www.ncsc.gov.uk/information/commercial-product-assurance-cpa. 
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operating without human supervision, at hard to reach locations, and lacking keypads or displays. Also, IoT 
devices may change owners several times. This is an issue when the user cannot update the security keys or 
firmware in the device, e.g., inherited IoT devices or consumer smart-home products. This only exacerbates 
the need for dynamically establishing or refreshing subscription data. 

Additionally, 5G aims to support massive IoT deployments of heterogeneous constrained devices. These 
devices also support a major challenge to the leveraging platform. Billions of IoT devices require cloud 
services to store, process, and share the information they gather. At the same time, due to their constraints, 
IoT devices suppose an easy cyberattack target, posing the risk of creating DDoS botnets [Cheng 2017]. For 
this reason, massive Machine Type Communication (mMTC) scenarios in 5G will impose a major challenge 
for the signaling plane and core networks. 

5.2.1 Software attacks 
Software in 5G environments must be secure and tamper resistant. Due to its highly pervasive and connected 
nature, a breach in a 5G-enabled application can have dire consequences (e.g. exploiting a vulnerability in 
a car while it is being used).  

Tampering RAM memory, while the execution is being carried out and not only when the code is being 
loaded into the machine is an attack that needs to be prevented. Since the code is not changed, these types 
of attacks cannot be detected by code integrity checks. Another vector of attack is possible by taking control 
of the processor and injecting code into sensitive memory areas like the stack or heap. 

Return Oriented programming (ROP) consists of using some parts of the code itself in arbitrary order so 
that the effect is that of a malicious program. To inflict this kind of attack, the attacker needs to gain access 
to software memory layout which in turn is obtained by introspection techniques. 

Another attack vector is exploited by accessing memory thanks to smart sequences of operating system 
instructions that allow the extraction of timing information, power consumption, cache access, etcetera. This 
side channel collected data can be then used to recover secret keys or any other valuable information. 

Some remediation techniques are [Lefebvre 2018]: 

• obfuscation: re-writes an iso-functional software more complex to analyze at the cost of slowing 
the software execution but providing software confidentiality; 

• anti-tampering: performing self-integrity checks based on processing few selected memory bytes. 
These bytes, however, can be overtaken by a knowledgeable attacker and, on the other hand, their 
footprint is rather low. 

• remote execution: placing the software on a remote trusted location not accessible to the attacker. It 
is one of the most secure approaches but at the cost of depending on a remote Internet connection. 
This technique provides both software confidentiality and integrity; 

• randomization: mapping the memory to different locations during the execution to avoid code 
reutilization attacks. This technique is contrary to the TEE concept in which the memory layout 
signatures are used; 
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• TEE: placing the code into a trusted memory area not traceable nor modifiable with minimal impact 
on performance since specific hardware capabilities are used (see also Section 4.2). There are 
different approaches per vendor, as shown in Table 1. 

requirements TPM+TXT ARM Trustzone Intel SGX AMD SEV 
isolation no yes yes yes 
remote attestation yes no yes yes 
sealing yes no39 yes yes 
dynamic root of trust yes (single) no yes yes 
multiple containers no no yes yes 
S/W+data confidentiality yes yes yes yes 
S/W+data integrity yes yes yes no 

 Table 1: TEE vs requirements. 

5.2.2 TEE applications 
Trusted execution environments (see also Section 4.2) are hardware powered techniques that fight against 
introspection risks in which an attacker breaks confidentiality and integrity on processed data or executed 
software. Data is usually encrypted and decrypted by software before sending it to the network, an attacker 
may achieve software modification therefore breaking data confidentiality and integrity. 

Within the 5GPPP project 5G-City the use of TEE [5G-CITY 2018] is envisioned to protect Virtual 
Infrastructure Managers (VIM), in particular OpenStack, by means of OpenStack's trusted compute pools 
[Weis 2014] feature consisting of computer nodes with Intel TXT verified by a remote attestation server. 
With Intel TXT enabled in the compute nodes, the measured data is sent to the attestation server in the form 
of a TCG-standard TPM quote, a signed report of the current internal TPM registers. Then this data is 
compared with well-known behavioral data, determining the trustworthiness of the executed code. 

Also, within 5G-City, the use of Unikraft kernels40 development of tools that will enable lightweight VM 
development to be as easy as compiling an app for an existing OS. These light VMs contain only the 
necessary functionality to achieve the objective of the VM. These unikernels do not run a complete operating 
system but rather against small pieces of OS functionality needed. There are already unikernel systems 
available in the market such as: ClickOS, MiniCache, Mirage, Minipython, Solo5, OSv, Erlang on Xen, 
HalVM. The objective of Unikraft is to ease the development and maintenance of unikernels. 

Within ENSURE [5G-ENSURE 2016] the protection of virtual switches is proposed avoiding the 
impersonation of the devices in SDN networks, allowing only the attested devices to connect to the central 
controller. 

In addition, several researchers proposed a number of interesting TEE applications that can be useful in 5G 
environments: 

 
 

39 Secure key inside Trustzone is possible. 
40 See https://xenproject.org/developers/teams/unikraft/. 
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• Lazard et al. [Lazard 2018] propose TeeShift to automatically strip functions from an existing 
binary and to run them within a given TEE; 

• in [Shih 2016] S-NFV is proposed where original NFV application is split into two parts: S-NFV 
enclave and host. Authors provide a performance evaluation using OpenSGX to secure Snort; 

• a completely different approach [Felsen 2019] is the mapping of security functions to Boolean 
circuits that can be then evaluated within an Intel SGX enclave – this approach eliminates the need 
of a per-application design allowing reusability; 

• MicroTEE [Zhang 2019] proposes a TEE Operating system based on the microkernel for ARM 
TrustZone and SEL4 Microkernel41. This approach is applicable to mobile phones which is 
interesting for fog environments. 

Finally, some open source projects provide with abstractions and tools to develop TEE like solutions, like 
asylo42, OpenSGX43 and OpenEnclave44. 

5.2.3 Conclusion 
5G goals revolve around connecting every aspect of life and society. For instance, sectors like e-Health, 
Intelligent Transportation Systems, Industry 4.0, Smart Phones, Wearables, etcetera. However, if critical 
systems connected suffer an attack, the resulting consequences may be catastrophic [Ahmad 2019]. For this 
reason, there is a lot of attention by industry and academia to identify and solve these challenges during the 
5G standardization process. The NGMN Alliance45 identified a set of highlighted security challenges at the 
early stages of 5G standardization. Some of these are highly discussed in the literature [Ahmad 2018], 
specifically: (i) flash or surge network traffic, due to massive public events like sports or music concerts, 
(ii) security at radio interfaces, prone to passive attacks, (iii) user plane confidentiality and integrity 
protection, (iv) roaming security due to long-term security keys  not being updated when roaming from one 
operator to another, (v) Denial-of-Service (DoS) Attacks on end-devices where the device's operative system 
implements the security, and (vi) signaling storms due to distributed control systems. 

5G introduced several novel and disruptive networking technologies. In pre-established networking 
technologies, security achieved maturity over a long period of time, but the recent paradigm changes of 
cellular network brought several challenges to be further researched. These challenges can be found in all 
the different 5G networks. The key technologies to obtain the service requirements in the access network 
are identified as (i) ultra-densification and offloading by use of pico-cells and femto-cells, (ii) the use of 
millimeter Wave (mmWave), (iii) employing unlicensed radio bands, and (iv) several advances in MIMO 
technologies [Andrews 2014]. However, all these access network enablers must be further investigated from 
the security point of view. The new security challenges of these technologies are way different to those 
presented in last-generation networking technologies. For instance, while 5G heavily leverages on MIMO 
technologies, full secrecy protection in resource allocation needs further research [Ng 2015]. 

 
 

41 See https://sel4.systems/. 
42 See https://asylo.dev/. 
43 See https://github.com/sslab-gatech/opensgx. 
44 See https://openenclave.io/sdk/. 
45 See https://www.ngmn.org/work-programme/5g-white-paper.html. 
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Novel technologies like NFV and SDN are a requirement for 5G [Chandramouli 2019]. In order to achieve 
an efficient and flexible overall performance in 5G, these new networking paradigms have been considered 
as a necessity. However, several security risks and attacks have been identified when employing them. For 
instance, the integrity and confidentiality of the data circulating through Virtual Network Functions (VNFs) 
depends on the hypervisor and cloud stack implementation. Vulnerabilities in NFV and SDN 
implementations have been frequently found. Hence, it is still a major security challenge to achieve a secure 
NFV environment. In SDN there are still severe risks that a control application bug may wreak havoc in a 
central network controller. 

5.3 AI-based security 

The dependence that exists nowadays in computer networks and services brings the necessity of adequate 
and reliable security mechanisms to protect the individuals and their data. Security procedures in 5G 
networks need to be reshaped in order to cope with the new requirements of this paradigm, as the traditional 
solutions adopted in the ossified networks are now outdated. The 5G ecosystem is bringing together many 
technologies expected to coexist in the same infrastructure. Besides, the virtualization of the resources in 
the form of VNFs implies the sharing of physical resources among different service providers. Machine 
learning arises as the potential leader to lead this change, by supporting the design of new mechanisms that 
can dynamically adjust themselves to the volatile nature of the envisioned 5G networks. ML is a field of 
study that gives the computers the ability to learn without being explicitly programmed for this task. ML 
models receive a dataset containing the information from which the algorithm is going to learn. ML 
algorithms are usually categorized in three different categories: Supervised Learning (SL), Unsupervised 
Learning (UL) and Reinforcement Learning (RL). 

5.3.1 Machine learning techniques 
The application of ML techniques in 5G networks security is being deeply studied by the scientific 
community. Numerous surveys covering the state of the art in this area have been published. Works in 
[HaddadPajouh 2019, da Costa 2019, Mohanta 2020, Al-Garadi 2020] explored the requirements, 
challenges and existing solutions regarding learning-based security procedures in Internet of Things 
networks, envisioned to be a fundamental pillar of the 5G ecosystem. In [Huang 2020], the authors examined 
ML techniques against hardware trojan attacks from four perspectives, i.e. detection, design for security, 
bus security, and secure architectures. Alrehan et al. [Alrehan 2019] studied how to detect Distributed Denial 
of Service (DDoS) on Vehicular Ad-hoc Networks (VANETs) using ML algorithms. Authors in [Sagar 
2019] introduced the necessity of cybersecurity solutions based on artificial neural networks, in order to 
prevent attacks before they occur. Finally, in [Tang 2019], the application of AI techniques to 
communications, networking and security in vehicular networks was reviewed. 

AI-based security is a hot topic, and, in consequence, there are several works exploring the synergies 
between ML models and their application in security mechanisms. Work in [Tang 2019] proposed a network 
intrusion detection method based on semantic re-encoding to increase the distinguishing ability of traffic 
and enhanced by using deep learning to improve the generalization ability of the algorithm. In [Wu 2020], 
authors presented a first approach in designing a deep learning model to predict the pattern of the next 
sequence of cyberattacks in certain areas. Sarker et al. [Sarker 2020] developed an intrusion detection model, 
based on snort, that uses ML to learn from a ranking of security features and builds a tree-based generalized 



CyberSec4Europe D3.10 Cybersecurity outlook 1 

 
   

 
 29 
 

intrusion detection model. The designed solution is effective in terms of prediction accuracy and, besides, 
it is also able of minimizing the computational complexity by reducing the features dimension. Authors in 
[Mulinka 2019] proposed a continuous and adaptive learning framework for network security that builds 
dynamic models to detect network attacks in real time. Bagaal et al. [Bagaa 2020] presented a ML-based 
security framework that handles the security aspects in IoT systems. The framework includes a monitoring 
agent and a reaction agent that use ML models, i.e. supervised learning, to perform traffic packets analysis 
and anomaly-based intrusion detection. In [Mamolar 2019] authors define a self-protection cognitive 
framework to protect dynamically against DDoS attacks in 5G networks. implemented and validated in real 
5G testbed 5gppp SELFNet.  In [Maimó 2018] authors proposed a deep learning-based system for botnet 
detection in 5G networks. They used an existing botnet database to test the performance of the solution. 

5.3.2 Conclusion 
The envisioned adoption of ML-based management and orchestration systems in 5G has opened a new way 
for attack vectors in heterogeneous networks. Both the hosting frameworks and the ML algorithms 
themselves can be corrupted in many different forms, impacting the network performance and the 
management and orchestration capabilities. The system availability is the first aspect to take into account, 
as the ML modules can be directly attacked, provoking malfunctions. The integrity of the data can also be 
in danger because the attackers can alter the information collected by the system, altering the later used ML 
decision making process. Finally, data or user privacy can also be violated by the interception of sensitive 
information. The security and privacy concerns of the ML components of the network are a fundamental 
pillar in the development of 5G and must be scrupulously studied. 

5.4 Authentication, authorization and accounting 

Among the highlighted requirements for authentication services in 5G [3GPP 2018] there are: (i) support 
for efficient mechanisms for a wide range of devices, (ii) a suitable framework that allows alternative 
authentication and key agreement methods to non-public networks employing subscriber data not defined 
by the 3GPP itself, (iii) support for third-party operator controlled authentication methods and protocols 
with custom credential schemes for isolated environments — like industrial automated factories. Another 
characteristic in the 5G security design is that there is no trust in the roaming partner, i.e. the home network 
does not trust the serving network employed by the UE in roaming scenarios. For this reason, 5G grants the 
home network total control over authentication and key derivation strategies. This way, the home network 
and UE can authenticate the serving network and protect the subscriber against serving network 
impersonating attacks [Kunz 2018]. Simultaneously, the 5G system must facilitate resource-efficient 
technologies that minimize signaling overhead, and support multicast downlink transmissions to 
authenticate groups of devices in massive IoT scenarios. 

5.4.1 Unified authentication framework architecture 
The 5G system authentication features include: (i) a unified authentication framework that will achieve 
support for more use-cases, (ii) UE identity protection, (iii) enhanced home network control, (iv) and key 
separation in key derivation elements. Authentication and key management are fundamental to the secure 
operation of cellular networks due to the need for mutual authentication between the network and the user. 
The derived cryptographic keys are employed mainly for user plane integrity and confidentiality and 
signaling messages. 
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Figure 5: Unified authentication architecture. 

The different elements of the 5G unified authentication (see also Figure 5) and key derivation 
framework [3GPP 2019] are: 

• User Equipment (UE): it is the device owned by the subscriber itself. It contains the Mobile 
Equipment (ME) — the device hardware — and the (U)SIM card; 

• Security Anchor Function (SEAF): a component located in the serving network acting as a 
transparent relay during authentication between UE and the home network. Under normal 
circumstances, it relies on the home network decision to accept or reject the registration attempt by 
the UE. 

• Authentication Server Function (AUSF): a module in the home network performing the 
authentication together with the UE. This is the architecture element that eventually decides to 
accept or reject the UE access to the system. It may rely on back-end services depending of the kind 
of authentication method employed. The AUSF handles authentication requests at the home 
network side coming from either 3GPP or non-3GPP access networks. 

• Unified Data Management (UDM): a component containing the functions related to data 
management such as the Authentication Credential Repository and Processing Function (ARPF). 
The latter chooses the authentication method based on the subscriber data, i.e., the subscriber ID 
and the configured policy. The ARPF also computes the keying materials for the AUSF. 

• Subscription Identifier De-Concealing Function (SIDF): this module de-encrypts the long-term 
subscriber identity that the UE sends as part of the registration request. The subscriber identity is 
encrypted with the home network public key and decrypted by the SIDF. 

• Non-3GPP Interworking Function (N3IWF): this needed only when the authentication process is 
performed over an untrusted access network (e.g. Wi-Fi or fiber), this module acts as an VPN server 
that establishes a security link between the UE and the serving network. This way, the UE can 
securely access the core, regardless of the intermediary access network security. 

The goal of the 5G Unified Authentication Framework is to achieve authentication mechanisms that are 
open — through technologies like EAP — and access network agnostic, i.e., devices can access the core 
services through 3GPP and non-3GPP access networks — like Wi-Fi or fiber. Due to EAP being compatible 
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with several methods, the network operator may choose the preferred method for deployment 
characteristics. This is how 5G offers authentication flexibility. Additionally, EAP enables AAA framework 
that are easily extensible, further improving heterogeneous deployments. 

5.4.2 Conclusion 
User authentication is still an open challenge in 5G systems for a variety of reasons. First, different 
stakeholders may have different needs and security requirements. Second, 
end device heterogeneity is a key factor for supporting as many use-cases as possible by 5G systems. Not 
only devices are different in form and factor, but also in network and authentication requirements. In the 
first phase of 5G standardization, use cases were grouped in three major categories, namely: enhanced 
Mobile Broadband (eMBB), Ultra Reliable Low Latency Communications (URLLC), and massive Machine 
Type Communications (mMTC). These category groups focus on the service needs with regards to data-
rate, low-latency and how important the data is. As an illustration, the periodic packets sent from a light-
post may not be as important as an automatic fire extinguisher valve. And finally, 5G aims also at integrating 
emerging communication access technologies, including those that employ licensed and unlicensed radio 
bands. Also, different integration mechanisms have been put in place in order to integrate technologies by 
non-3GPP standard developing organizations. This is, devices employing non-3GPP technologies, e.g., Wi-
Fi or fiber, can access the 5G core services and data networks through intermediate architecture elements. 
This pushes the need for a seamless and access-independent security infrastructure in 5G systems. 

In the future, with the adoption of a unified authentication architecture (see Section 5.4.1) 5G-enabled 
devices and applications will be able to create a “world of 5G”, where everything is connected, hopefully, 
in a safe manner. However, for the present, a full AAA for 5G networks is not yet available, due to the 
astonishing variety of involved partners, technologies and security requirements. 
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6 Conclusion 

This deliverable reports the outcomes of the investigations of Task 3.9 on Continuous Scouting. It presents 
a collection of novel technologies and state-of-the-art models in the cybersecurity world that may 
significantly impact the near future. In addition, this document also discusses what are the challenges and 
the most recent trends that are affecting the current research. 

Machine and deep learning techniques (see Chapter 2) are key technologies for detecting new cyberthreats 
in a timely manner. Each new year this type of AI techniques are proving themselves more and more 
effective. However, the application of these models is critical when the privacy of users is at stake. Their 
application in several sectors (e.g. the health industry) must be rigorously performed in order to be compliant 
with the new GDPR. 

Artificial intelligence techniques (see Chapter 3) can help the defender but also the attacker. An attacker 
can introduce some ad-hoc noise in the training process of a classifier in order to misclassify some samples 
(e.g. classify as benign events an attack, or vice-verssa). Furthermore automatic AI-based techniques are 
starting to surface as new powerful tools in the social engineering area. 

Trusted systems (Chapter 4) are not a new idea, however, their diffusion is starting to take place, especially 
in cloud environments. Several new attacks have been discovered, making these hardware components less 
secure than though. In addition, the lack of proper standards (especially for TEEs) is causing the production 
of very specialized software components, thus limiting their portability on different hardware platforms. 

5G (Chapter 5) is the new promised land where every device is connected. The adoption of this family of 
technologies, however, will also bring new problems. An attack on a 5G-enabled appliance may have severe 
repercussions on its connected devices, thus exacerbating  the attack's effects. The wide use of both hardware 
and software protections will most likely be a decisive factor to make 5G networks more secure, especially 
with the growth of the SDN paradigm. Furthermore, user authentication will play a pivotal role. Different 
stakeholders and the vast heterogeneity of devices supporting 5G will be a challenge in the near future. 

While it is not possible to predict the future and hence how the IT field will evolve, our investigations can, 
hopefully, provide some interesting food for thought about how the current technologies and their 
applications are starting to shape our world of tomorrow. 
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