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ABSTRACT When requesting a web-based service, users often fail in setting the website’s privacy
settings according to their self privacy preferences. Being overwhelmed by the choice of preferences, a
lack of knowledge of related technologies or unawareness of the own privacy preferences are just some
reasons why users tend to struggle. To address all these problems, privacy setting prediction tools are
particularly well-suited. Such tools aim to lower the burden to set privacy preferences according to owners’
privacy preferences. To be in line with the increased demand for explainability and interpretability by
regulatory obligations – such as the General Data Protection Regulation (GDPR) in Europe – in this paper
an explainable model for default privacy setting prediction is introduced. Compared to the previous work we
present an improved feature selection, increased interpretability of each step in model design and enhanced
evaluation metrics to better identify weaknesses in the model’s design before it goes into production. As a
result, we aim to provide an explainable and transparent tool for default privacy setting prediction which
users easily understand and are therefore more likely to use.

INDEX TERMS Privacy preference, Privacy setting, Machine learning, Explainability, Interpretability

I. INTRODUCTION
Nowadays, many internet service providers are interested in
retrieving personal data when a user requests online service
access. The General Data Protection Regulation (GDPR)1

requires to give the users a choice on that, but since many
companies still want to get users’ data for their business
model, they have a strong incentive to work with bad default
settings and dark patterns to lure the users into consent.
Moreover, not accepting the settings recommended by the
service provider almost always ends in the denial of the
service. Besides this, most users are overstrained or even
not aware of their self-privacy preferences [31]. Solove [45]
claims that the principle of privacy self-management that
includes the rights to notice, access and consent to the
collection, use, and disclosure of personal data is beyond
the users’ capabilities and almost always ends in insufficient

1Regulation (EU) 2016/679 on the protection of natural persons with
regard to the processing of personal data and the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation) OJ
L119/1.

control over a user’s private data. Therefore, a user-specific
and tailored evaluation of anonymization and usability is
mandatory.

To support users in acting according to their preferences
and to prevent them from providing privacy-related data un-
intentionally, a support tool that can decrease the complexity
of privacy settings and helps the users to better understand
their privacy preferences is highly preferable. But privacy-
friendly providers do not only need an adequate tool which
the users can operate, they also need to demonstrate that
their model is considering the users’ interests. Therefore, if
we want to support users with a Machine Learning (ML)
approach, we also need to explain its results.

A tool fulfilling these requirements besides providing
explainability was already proposed by Nakamura et al.
[31, 32, 33]. Their two models can automatically predict 75
unknown privacy features from 5 features received from the
user with an accuracy of 82 % and 85 % and are trained and
tested based on a survey with 10,000 Japanese participants.
Their models utilize the ML methods of K-means and the
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Support Vector Machine (SVM). An SVM-based model by
Nakamura et al. [34] was tested in a user evaluation and
therefore underpins the need and applicability of default
privacy setting prediction in a real-world scenario.

Although the overall performance of these models is still
good and the contribution was verified in a user evalua-
tion [34], the question of how a user can understand the
privacy setting prediction of such a ML approach has not yet
been fully investigated. With the increasing demand for trust
and explainability, also supported by many new regulatory
obligations to ML models such as stated by the GDPR, a
user right to demand transparency has been strengthened. To
be more precise, if decision making or profiling is involved,
information must be provided in an understandable way to
the user so that fairness and transparent processing of the
model’s logic can be assessed.

In this paper, we focus on increased interpretability, vi-
sualization, and validation of the achieved results. Our aim
is not to improve the accuracy but to add interpretability to
allow the user a better understanding of the results while
preserving accuracy as best as possible. To achieve better
insights from the beginning and to have a better feature
selection approach compared to the previous models, we
introduce a new explainable model based on a K-means
clustering and an extended Iterative Dichotomiser 3 (ID3)
[24] classification model. Each step building the model is
evaluated, explained, and discussed in detail.

The remainder of the paper is structured as follows. Sec-
tion II-D provides an overview of the scores used for the
evaluation. In Section II we discuss related work in privacy
setting prediction and have a closer look at explainability and
interpretability. In Section III we explain the methodology
of the paper. In Section IV, we compare the previous work
of Nakamura et al. [31, 32, 33], and in Section III-C we
elicit the requirements investigated in this paper. In Sec-
tion V we present our approach including the requirements
of Section III-C. In Section VI we present our results that
are then further discussed in Section VII and the results are
evaluated against the requirements. Finally in Section VIII
we summarize the main conclusions and point out fields for
further investigation.

II. RELATED WORK
This section provides an overview of related literature in the
field of privacy setting prediction and introduces studies that
deal with the challenges of explainability.

A. PRIVACY SETTING
The right to notice, access, and consent to the collection,
use and disclosure of privacy-related personal data can be
summarized as privacy self-management [45]. Although this
right provides persons with comprehensive possibilities to
manage and control their privacy, this concept exceeds the
capacity of the average user [45]. Finally, this results in
insufficient management of personal data.

Apart from this, Consolvo et al. [10] show that the majority
of people do not read data policies although they are essential
for a personalized privacy setting. According to their study,
a lack of knowledge of privacy-related technologies raises
the hurdle to assess the own privacy concern as well [10].
This mismatch between intended and real privacy settings is
also shown by Madejski et al. [29], who investigate privacy
settings in an online social network service.

Besides the lack of understanding privacy-related tech-
nologies an experimental study by Acquisti and Grossklags
[1] identified a knowledge gap in legal forms when privacy
policies are accepted. Their findings are supported by Pollach
[38] who also confirm the existence of a knowledge gap in
privacy-related, technical, and legal terms.

One approach to close this knowledge gap on the users’
side is to provide privacy setting support systems as intro-
duced by Fang and LeFevre [15, 16] through their privacy
wizard that addresses the privacy settings for social networks.
This privacy wizard automatically keeps the interaction of a
user as low as possible by predicting the privacy preferences
of a user from a set of observed examples. Besides this,
there are also approaches that try to develop a language that
describes privacy policies [3, 11, 12]. Backes et al. [2] utilize
abstract syntax and semantics to compare the privacy policies
of enterprises. Similar to this, Tondel et al. [46] present a
metric that facilitates the comparability of machine-readable
policies. According to the opinion of Sadeh et al. [42], ML
approaches will play a significant role in the future because
their predictions of preferences are likely to exhibit a better
fit to the real preferences than user-selected preferences. For
instance, Tondel et al. [46] suggest a ML approach that
generates preferences in the context of privacy agents. Their
solution also has the advantage to disconnect the privacy
preference self-assessment from a specific situation where
the achievement of a service might exhibit a higher impor-
tance and the privacy preferences might be neglected [46].
An open issue of these studies is the justification why a
user should trust the privacy setting predictions of such ap-
proaches. This can be only achieved by adding transparency
and explainability in every step of the model design, as well
as explaining the overall prediction in an easy understandable
manner. To the best of our knowledge, this is the first paper
addressing explainable machine learning for default privacy
setting prediction.

B. EXPLAINABILITY AND INTERPRETABILITY
In the field of ML, a clear differentiation of explainability and
interpretability is blurred within the literature. According to
Lipton [25], who analyze the different approaches in detail, a
large group of researchers who utilize interpretability to rein-
force trust exists. They claim that other groups who combine
interpretable models and models that uncover causality in the
data exist as well. Lipton et al. also identified researchers who
relate interpretability to understandability or intelligibility,
aiming to understand in detail how a model works. Also,
post-hoc interpretation is identified that compared to other
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definitions neglects to explain how a method works in detail.
Besides this, Gilpin et al. [18] define interpretability alone

as insufficient for humans to trust black box models. They
claim that explainable models are interpretable by default but
up to them, this does not hold vice versa.

In contrast to this, Biran and Cotton [5] state out that
explainability and interpretability are closely related. They
propose that a system is interpretable if the behavior of that
system can be understood by a human. This can happen by
introspection or a provided explanation.

This paper will follow Miller [30] and treat interpretability
and explainabililty as interchangeable. As shown in Figure 1,
we treat interpretability as an additional channel besides the
evaluation metric that only provides a performance measure
of the model but cannot answer the question why a certain
decision in the model was made.

FIGURE 1: Demand for interpretability [25]

C. CHALLENGES OF EXPLAINABILITY
With the introduction of regulations that strengthen the right
of a user to understand and interpret ML-based predictions as
covered by the General Data Protection Regulation (GDPR)
in Europe, approaches that increase the interpretability of ML
models have to be taken into account [19]. Related challenges
are described in the following studies.

Hall and Gill [21] highlight that particularly strongly regu-
lated industries, e.g. banking, insurance, and healthcare are
nowadays restricted from using simple and linear models
for predictions instead of more complex machine and deep
learning approaches. Moreover, they line out the existence
of a trade-off between interpretability and more complex
models with higher accuracy.

Another major problem is the absence of a best ML model.
Different ML approaches tend to produce different predic-
tions for the same instance but exhibit the same accuracy
score for a given evaluation metric [21]. To overcome these
problems, Hall and Gill present several model-agnostic and
model-specific approaches to increase the explainability.

Others such as Guidotti et al. [20] claim that the deci-
sions of ML models are interlinked with the digital trace
of people. Thereby, especially daily provided data such as
location, purchases and comments can contain human biases
that are adopted by ML models and therefore can result in
discriminatory and wrong results. Moreover, Guidotti et al.
claim that the term explainability is misleading because the
degree of expertise needed is not clearly defined.

To define requirements of an explainability approach with
the aim to increase interpretability and trust, Petkovic et al.

[37] experimented with random forest-based classifications
trees. Thereby, they suggest 6 questions a report for experts
and non-experts should answer. These questions take into
account the balance of the training data, the importance
of features, direction of features, feature interaction, and
understandability of the report.

In much more detail, the problems and information a report
should provide are considered and summarized by Sokol
and Flach [44]. They propose a framework for the system-
atic assessment of explainable approaches. This framework
evaluates explanatory systems against the five requirements
(functional, operational, usability, safety, and validation).

D. EVALUATION METRICS
The most common way to calculate the accuracy of a classi-
fication model is to compare the correct and false predicted
instances. While this score is easy to understand, low accu-
racy scores for small classes are very likely to be hidden. The
common accuracy is presented in Equation 1.

accuracy(y, ŷ) =
1

n

n−1∑
i=0

1(ŷi = yi), (1)

with actual y, predicted ŷ and n instances.
Because the class size of our data is imbalanced, we

require a score that takes the accuracy per class into account.
While this can also be computed with the arithmetic mean,
the harmonic mean is often preferred because it is more sen-
sitive to outliers. Therefore, systematically underperforming
classes are more likely to be detected. This can significantly
improve the accuracy and dissolve discrimination of minori-
ties in the data. The average classaccuracyHM is presented
in Equation 2.

averageclass accuracyHM =
1

1

K

∑
k∈K

1

recallk

, (2)

with k ∈ {1, 2, ...,K} and K numbers of classes.
Another common method for evaluating a classification

result is the confusion matrix and related evaluation metrics
such as precision, recall and F1-score. In this study the
classes will represent groups of users with a certain level of
privacy awareness. In the following, we will explain how the
scores are calculated in our approach.

From a confusion matrix the precision can be defined as
the ratio of instances that were predicted to have the privacy
concern of class 2 that exhibit actually the privacy concern
of class 2 and instances that are wrongly assigned to class
2 [39].

In contrast to this, the recall describes the ratio of instances
that actually exhibit the privacy awareness level of class 2 and
are correctly assigned to class 2 [39]. Therefore, the recall is
also known by the term True Positive Rate (TPR).

Taking into account recall and precision, the F1-score
is defined as the ratio of actual class 2 privacy concern
predictions to the arithmetic mean of instances assigned to
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the privacy concern of class 2 and instances that actually
exhibit a privacy concern of class 2.

Because the F1-score combines the previous scores, it is a
commonly used and good measure for model performance
[24]. Again making use of the harmonic mean, here the
harmonic mean of precision and recall, imbalanced classi-
fications are likely to be detected.

III. METHODOLOGY
An overview of data collection, data structure, and data
preparation are provided in the following paragraph.

A. DATA COLLECTION
The web-based survey in this study is designed to gain
more insights into the users’ privacy concerns in relation to
their willingness to share personal data for a given purpose.
In the survey, the answers of 10,000 Japanese participants
were collected. As shown in Table 1, 16 data categories are
defined. For each intended purpose, given in Table 2 the
survey participants were asked to fill out their willingness to
share each of these 16 data categories on a Likert scale. The
Likert scale is designed within a range from 1-6 mapping
to the Likert types from “strongly disagree” to “strongly
agree”2. The categories and data purposes are closely related
to the ones from the Platform for Privacy Preferences Project
(P3P) [49]. Moreover, some demographic and device data
were added to achieve more insights into the users’ behavior.

TABLE 1: Queried data type

No. Categories
1 Address and telephone number
2 Email address
3 ID for online services
4 Purchase record
5 Bank account
6 IP address (unique network id 192.168.xxx.xxx)
7 Browsing history
8 Logs on a search engine
9 Personal info (age, gender, income)
10 Contents of email, blog, twitter etc.
11 Cookie (Cookies in Your Internet Web Browser)
12 Social Info. (Membership, Religion, volunteer records)
13 Medical Info
14 Hobby
15 Location Info
16 Official ID

TABLE 2: Intended purpose of data

No. Data purpose
A Providing the service
B System administration
C Marketing
D Behavior analysis
E Recommendation

The resulting questionnaire finally exhibits 80 (5 ∗ 16)
combinations of categories and purposes that in the following
will be treated as feature values. By handing the survey via

2A Likert scale consists of a minimum of four Likert types which can be
mapped to a composite score [7].

a web-based system to 10,000 participants, the final data set
consists of 800,000 data points. In this paper, we also call the
80 questions features and the value of the feature is termed
feature value. Talking about the 10,000 participants in the
models, the terminology instances is used.

B. DATA COMPOSITION
As shown in Table 3 the participants of the survey are
uniformly distributed with regard to gender and age. Inves-
tigations on the digital nativity of users as introduced by [40]
did not have a significant impact [31].

TABLE 3: Distribution of age

Gender Age ratio (%)
Male 20s 10.0
Male 30s 10.0
Male 40s 10.0
Male 50s 10.0
Male Over 60 10.0
Female 20s 10.0
Female 30s 10.0
Female 40s 10.0
Female 50s 10.0
Female Over 60 10.0

Table 4 informs about the used devices the online survey
was accessed from. 53.5 % of participants used a smartphone
to access the survey, whereby the share of Android users is
6.5 % higher compared to iPhone users.

TABLE 4: Distribution of device

Mobile phone ratio (%)
iPhone 23.5
Android 30.0
Others 1.7
Not smart phone 44.9

The distribution of feature values that are directly mapped
to the values of the Likert scale among all instances is impor-
tant for a better understanding of the data. It is particularly
noticeable that the number of instances is highest for the
Likert values 1 (39.69 %), and 2 (29.85 %) and decreases
significantly over 3 (18.24 %), 4 (8.45 %) and 5 (3.07 %) up
to 6 (0.69 %).

C. REQUIREMENT ELICITATION
The aim of this chapter is to line out open research questions
of the preceding papers of Nakamura et al. [31, 32, 33] that
form the starting point of the current paper.

Analyzing the Model 1 (SVM) and Model 2 (Combined
Scheme), three requirements have been derived that will be
tackled in this paper.
• R1 Appropriate Feature Selection

The first requirement is to find a method to optimize
the selection of the best combination of n out of the
80 features for questioning the user. Table 5 for Model
1 and Table 6 for Model 2 show that the selection is
done randomly and not user-specific in the previous
approaches [31, 32, 33].
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• R2 Provide Interpretability
Current data protection regulations such as the GDPR
formulate the need of explainability, especially for the
affected user of an ML-based application. Therefore,
the second requirement aims to make the provided ML
model more transparent.

• R3 Enhance Evaluation Metrics
Basic evaluation metrics exhibit the risk of systematic
discrimination of small classes or user groups in the
data set. Therefore, this requirement aims to focus on
a more detailed evaluation of the model, to detect such
misclassifications of underrepresented or small classes
in the data set.

D. TECHNICAL IMPLEMENTATION
All tests were implemented in the programming language
Python 3.7.4 and run on a late 2013 MacBook Pro with a 2.4
GHz Intel Core i5, 8 GB (1600MHz) memory and an Intel
Iris 1536 MB graphic card. In the implementation the ML
library scikit-learn [36] and the fundamental package
for scientific computing numpy [22] were used.

IV. PREVIOUS APPROACHES
In this section we provide a brief overview of the four pre-
vious papers. In general, all papers aim to provide a solution
to reduce the burden of privacy setting for web-based ser-
vices according to the user’s privacy preferences. Therefore,
the first papers [31, 32] propose a machine learning-based
approach for default privacy setting prediction that is further
improved in the third paper [33]. In the fourth paper [34] the
model is tested and evaluated in an user experiment.

A. TECHNICAL DESCRIPTION
The first three papers present two different approaches, while
both are based on the same data. The first approach utilizes
a Support Vector Machine (SVM) while the second approach
uses a combination of K-means and SVM and is therefore
called Combined Scheme. The following sections give an
overview of the models with the final parameter setting but
do not explain the process of parameter setting from the
beginning.

1) Model 1: Support Vector Machine
Model 1 consists of 75 sub-models (Model 1.1 to Model
1.75) that are based on a classification SVM approach [31,
32]. In the learning phase, 5 of the 80 features are chosen
randomly and used for training and prediction. Nakamura
et al. [33] determine the number of selected questions n = 5
with 1 ≤ n ≤ 80 by a performance indicator with several
rounds of testing with randomly chosen features. As shown
in Figure 2, each user has to answer 5 preselected questions
and the 75 remaining features are predicted by the models.
Therefore, each sub-model is trained with the 5 preselected
features to predict one of the 75 features. Thereby, the
feature values have been reduced from 1-6 to 1-3, map-
ping 1 maps to [1, 2]; 2 : [3, 4]; and 3 : [5, 6] and used as ac-

ceptance levels for the SVM classification models. For the
evaluation metric of the model, the percentage of correctly
guessed values is calculated by comparing the 75 predicted
values with the original values, as given in Equation 1 with
ŷi := predicted feature value, yi := actual feature value.

FIGURE 2: Flow chart Model 1

In the guessing phase, five questions were chosen ran-
domly as input for the trained SVM models. Then a predic-
tion is made and the accuracy is calculated by the percentage
of correctly guessed values.

Finally, an average model accuracy is calculated by re-
peating the random choice of input questions 15 times. The
results are shown in Table 5.

TABLE 5: Results of SVM-scheme with optimization (#Training data
= 9,000, #Test data = 1,000)

Combination Accuracy
TRD

Accuracy
TED

A-8 B-12 C-16 D-14 E-11 0.8589 0.8566
B-7 C-12 D-6 D-14 D-15 0.8540 0.8519
B-12 B-15 D-5 D-8 E-6 0.8510 0.8470
B-7 C-16 D-11 D-14 E-11 0.8540 0.8518
B-4 B-15 D-14 E-6 E-11 0.8522 0.8491
B-8 C-16 D-14 E-10 E-11 0.8547 0.8525
A-8 B-12 D-6 D-14 E-11 0.8545 0.8531
B-4 B-15 D-6 D-14 E-11 0.8528 0.8510
A-3 A-16 C-12 D-11 E-3 0.8504 0.8480
B-7 B-12 D-14 D-15 E-6 0.8531 0.8503
B-7 C-14 D-10 D-16 E-11 0.8524 0.8499
B-7 C-12 D-10 D-16 E-11 0.8515 0.8486
A-2 B-7 D-14 D-16 E-11 0.8547 0.8532
A-12 B-7 C-14 D-6 D-15 0.8537 0.8518
A-12 B-8 C-16 E-10 E-11 0.8526 0.8500

2) Model 2: Combined Scheme
This model, first intorduced in Nakamura et al. [31, 32],
consists of two sub-models and combines Model 2.A (K-
means) and Model 2.B (SVM) as shown in Figure 3. In a
first step, unsupervised learning with K-means is utilized to
generate K clusters from the training data set. Each instance
is assigned to one cluster k with 1 ≤ k ≤ K. Then the
feature values of the gravity point are set as target values
for the instances in the referring cluster. Sub-model two is
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based on a supervised learning approach using an SVM.
Similar to Model 1, the input of the SVM are the selected
questions n = 5 with 1 ≤ n ≤ 80 of all features. The
SVM model then uses these selected 5 features to assess
the instance to one of k clusters, whereby the classes of
the SVM are mapped on the cluster of the K-means model.
Finally, the accuracy is calculated as in Equation 1 with
ŷi := centroid value for instance i in the predicted cluster,
yi := actual feature value.

FIGURE 3: Flow chart Model 2

The results of this scheme for 9,000 instances in the
training and 1,000 instances in the testing set are shown in
Table 6.

TABLE 6: Accuracy of Combination Scheme (#Training data = 9,000,
#Test data = 1,000)

Combination Cluster
Accuracy
TRD

Accuracy
TRD

Accuracy
TED

A-11 A-15 B-4 C-2 D-6 0.7314 0.8169 0.8174
A-12 B-7 B-8 D-11 E-9 0.7490 0.8211 0.8217
B-6 B-7 D-7 E-10 E-11 0.7247 0.8224 0.8233
A-10 B-4 D-4 E-6 E-8 0.7441 0.8205 0.8206
A-10 B-4 D-6 D-9 E-6 0.7460 0.8194 0.8200
A-10 B-4 D-6 D-9 E-7 0.7638 0.8234 0.8250
A-10 B-4 D-7 D-9 E-6 0.7594 0.8223 0.8230
A-10 B-4 D-9 E-4 E-6 0.7510 0.8192 0.8195
A-11 B-4 B-8 D-10 E-6 0.7432 0.8206 0.8207
A-11 B-4 D-10 E-6 E-13 0.7559 0.8212 0.8214
A-13 B-4 D-11 E-6 E-11 0.7430 0.8211 0.8224
A-16 B-6 B-10 D-8 E-6 0.7577 0.8231 0.8235
B-4 B-10 D-4 D-13 E-7 0.7456 0.8230 0.8239
B-4 D-4 D-6 D-13 E-12 0.7495 0.8237 0.8244
B-4 D-6 D-9 E-4 E-7 0.7408 0.8232 0.8243

B. USER EVALUATION
Nakamura et al. [34] did a user experiment for investigat-
ing users’ impressions of default privacy setting prediction
system and the impact of nudge effect, that is, observing the
results of four groups given different suggestions from; (1)
original model, (2) privacy-biased model, (3) open-biased
model, and (4) random suggestion model. The experiment
was conducted from March 26 to April 2, in 2018, and the
number of participants was 552. The participants were di-
vided into four groups, each of which is assigned the previous
four models. They first answered to five predictor questions

and got predicted answers for remaining 75 questions from
assigned model. If the predicted answers were different from
their opinions, they changed these answers following to their
opinions. In the study the acceptance rate was based on the
ratio of all 75 non-predictor questions where the participants
did not change the predicted answers. After engaging with
the prediction system experiment, participants gave their
impression of the system and experiment via a survey, for
example, “This system would be convenient to help control
the disclosure and protection of my personal data” [34].

The main two results of the experiment and survey are (1)
majority of the participants is positive for such a prediction
system, and (2) neither the privacy-biased model or the open-
biased model produced a statistically significant difference in
the proportion of accepted predictions. (1) means there is a
potential need for such a prediction system. (2) suggests such
a prediction system can easily push users towards openness
or sharing if the system has evil intention. This result leads to
the requirement of explainability for a default privacy setting
prediction system.

V. APPROACH
In this section a new Model 3 (Interpretable Scheme) is
intoroduced as an extension of the Combined Scheme that is
based on two successive sub-models. The Combined Scheme
was preferred because it exhibits only two sub-models that
have to be explaind, compared to 75 sub-models in the SVM-
based scheme.

Moreover, to tackle R1 (Appropriate Feature Selection),
Model 3 is based on K-means and an extended Iterative Di-
chotomiser 3 (ID3) algorithm that uses methods of the C4.5
such as pre- and post-pruning. The model tackles this re-
quirement with an impurity metric-based approach, utilizing
the Information Gain (IG). The idea behind this is to derive
a decision tree that enables the user to answer personalized
questions iteratively that were learned from a training data
set. Although building the tree can be computationally time-
intensive, the classification of an unseen user is very quick
after the learning phase because no further computation is
necessary.

To tackle R 2 (Provide Interpretability), model-specific
methods are used to provide further insights into how the
model was built and how the model makes decisions. The
interpretability is increased by a visualization that supports
the user in understanding how Model 3 makes decisions.
The visualization is prepared in a simplified way for experts
and non-experts. The aim of the provided visualizations is
on the one hand to increase trust and understanding but also
on the other hand to show possible constellations where the
algorithm might not provide reliable results.

To tackle R 3 (Enhance Evaluation Metrics), each sub-
model is measured against enhanced evaluation metrics and
the results of the metrics are explained to increase also
the explainability. Besides the basic calculation of accuracy
Equation 1, we prefer the averageclass accuracyHM (cf.
Equation 2) that is useful for an unbalanced data set because
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it takes the deviation of small classes more into account
and therefore lowers the burden to identify classification
problems [24]. Overall, more complex evaluation metrics
based on the confusion matrix such as Precision, Recall, and
F1-score will be introduced to achieve a better understanding
of the False-Positives and False-Negatives.

FIGURE 4: General flow chart of Model 3

Figure 4 shows a general view flow chart of the explainable
scheme. Model 3 is divided into an unsupervised classifica-
tion (Model 3.A) and a supervised clustering model (Model
3.B) similar to the combined scheme. The big difference is
that Model 3.B creates a classification tree. Starting with the
same question at the beginning, the user is asked up to 4
individual questions in relation to the previous answer. Using
this more user-oriented approach, we aim to achieve a better
performance compared to a model where every user is asked
the same question. The required amount of questions can
also be reduced to a minimum because the algorithm stops
earlier, if a user can be clearly classified based on less than 5
questions.

Figure 5 provides more technical insights into the Model
3 approach. In the first step, the privacy setting database
is classified with an unsupervised learning approach. To
group the privacy concern, we aim to map the clusters on
the Westin/Harris Privacy Segmentation model [10]. This
model defines people with the highest privacy concern as
fundamentalist, people with a medium privacy concern and
a balanced privacy attitude as pragmatist and people with no
privacy concern as unconcerned.

To provide a better understanding how the classes differ
from each other, we visualize the overall IG and the IG in
between classes. After that, instances are labeled, the data set
is sampled and split into a training, pruning, and testing set.
The training set is used to train the classification model with
the class label from the previous step as Y . The performance
of the resulting classification Ŷ is evaluated against the
testing set and then further improved with the pruning set.
After improving the classification tree with the pruning set
the resulting classification tree is evaluated again with the

testing set. The pruning is repeated until all post-pruning
conditions are met. In our approach, we have used error
pruning, cutting the leaf if the missclassificationrate in the
parent node is higher compared to the missclassificationrate
in the leaf. Although it is also possible to cut leaves that
do not exhibit a minimum number of instances, this method
could not increase the results significantly, which is the
reason why the input variable min_samp was in all tests
set to 0. The resulting classification tree can now be handed
to the graphic user interface that we call tree parser where
the user can parse the tree. Finally, we generate a brief report
summarizing the main information of the tree path and results
from the evaluation of the model.

FIGURE 5: Technical flow chart of Model 3

VI. RESULTS
In this chapter, we will start by presenting the results of the
different steps from Figure 5 and then present the explain-
ability report.

A. CLUSTERING
Nakamura et al. [31, 32] have already tested K-means [28],
Ward’s method [48], and DB-Scan [13] whereby K-means
performed best. In this paper, we introduce the Gaussian
Mixture Model (GMM) [6] and Spectral Clustering [35, 47]
and test it against a Mini Batch K-means algorithm [43] that
finds a better starting point and relies on randomly sampled
subsets of the original data set. Each model is run 10 times
and the best result is chosen. To evaluate the performance
of the clustering results we use the Silhouette Score. We
have chosen GMM and Spectral Clustering because they are
known to deal with high dimensions well. To understand
the performance of the algorithms better, we compare the
visualization of the data set that we achieve by reducing the
dimensions from 80 features into a two-dimensional plot. To
do this, we utilize the t-Stochastic Neighborhood Embedding
(t-SNE) [27] and the Principal Component Analysis (PCA)
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[9, 26]. Figure 6 shows the resulting plots. To underpin the
visualization results, we use the Silhouette Score in Table 7 to
evaluate the performance of the overall clustering result, for
the cluster size K = 3. The visualization of the GMM shows
completely overlap clusters as visualized with the PCA (see
Figure 6a) and t-SNE (see Figure 6d). The Silhouette Score
is very close to zero, this means that most of the points could
also be placed in another cluster as well. For K-means, both
visualizations with PCA and t-SNE (see Figure 6b, 6e) show
a very well separation of the clusters. While there exists an
overlap in the border region, no points are placed close to the
centroid of another cluster. This very clear visualization is
also underpinned by the highest Silhouette Score of 0.2574
compared to the other methods. For the Spectral Clustering,
the visualizations (see Figure 6c, 6f) also show clear borders
between the clusters. Nevertheless, the Silhouette Score is
much lower compared to K-means. Therefore, K-means was
chosen for further investigation.

TABLE 7: Silhouette Score for different clustering algorithms GMM,
K-means and Spectral Clustering with K = 3

K = 3 Silhouette Score
GMM 0.0095
K-means 0.2574
Spectral Clustering 0.1209

In a second step, we assess the optimal cluster size of K-
means with K ∈ 4, 5. Again, we have chosen the best out
of 10 runs per algorithm. The criteria of visualization used
above (see Figure 7) and Silhouette Score (see Table 8), the
Westing/Harris Privacy Segmentation model [10] was taken
into account.

TABLE 8: Silhouette score for K-means K ∈ 2, 3, 4, 5

Silhouette Score Mean Answers
K 1 2 3 4 5 All 1 2 3 4 5
2 0.46 0.27 0.38 1.57 3.03
3 0.45 0.11 0.19 0.26 1.25 2.20 3.35
4 0.46 0.11 0.17 0.32 0.25 1.23 2.13 3.17 4.77
5 0.47 0.14 -0.04 0.20 0.16 0.24 1.18 1.97 2.54 3.04 4.20

While the visualization for K = 4 has clear borders and
well-placed centroids as shown for PCA (see Figure 7a) and
for t-SNE (see Figure 7c). For K = 5 Figure 7b shows the
PCA visualization that looks not that clear. Especially for
the t-SNE visualization (see Figure 7d) shows an overlapping
area between cluster 2, 3 and 4 can be identified. This result
is supported by a lower Silhouette Score for these clusters.
While the overall score between the 3 and 4 cluster solution
is very close together, the 4 cluster solution has the lowest
score and is therefore rejected. Based on the Westing/Harris
Privacy Segmentation Model we expect a cluster that can be
mapped to an unconcerned behavior, the mean answers show
that this is only possible with the 4 cluster solution.

Finally, we map the 4 cluster result on the Westin/Harris
Privacy Segmentation Model in Table 9. Taking the mean
and median into account, the mapping of the first cluster
to the privacy concern fundamentalist fits very well. The

TABLE 9: Mapping on the Westin/Harris Privacy Segmentation Model

Cluster ID Privacy Concern Mean
Answer

Median
Answer

1 Fundamentalist 1.2274 1
2 Pragmatist (low) 2.127 2
3 Pragmatist 3.1673 3
4 Unconcerned (low) 4.7703 5

second cluster is somewhere between fundamentalist and
pragmatist and therefore labeled pragmatist (low). The third
cluster is labeled as pragmatist. Because there seem to be
fewer instances in the data that are completely unconcerned,
we label the 4th cluster unconcerned (low).

B. CLASSIFICATION
At the beginning, the data is sampled by stratified sam-
pling [24] and split into a training, pruning and testing set. To
achieve an equal distribution of each cluster in the training
set and to compensate the low size of cluster 4 as shown
in Table 10, the data is oversampled with the Synthetic
Minority Over-sampling Technique (SMOTE) [8]. Figure 8
shows clearly visible the increase of cluster 4.

TABLE 10: Cluster sizes before and after using SMOTE

Cluster 1 2 3 4
Before 1811 1993 1120 76
After 1993 1993 1993 1993

To determine the best size of the training data, different
sizes were tested, while the remaining data was split equally
into the testing and pruning set. Figure 9 shows the results
of running the algorithm several times. To better identify the
trend of the averageclass accuracyHM a linear regression
with 5 basis functions is utilized. From this figure, we can
assume that the best size for the training data is between
5000 and 7000. Results below 5000 can be rejected because
the model picks up too much noise and has therefore a
low averageclass accuracyHM for the testing set [41].
Results higher than 7000 should be neglected because the
algorithm begins to overfit, indicated by the decreasing
averageclass accuracyHM for the training and testing data.
We have chosen 5000 instances for the training data because
this most likely to prevents overfitting and the data can
perfectly be split into 4 folds for cross validation.

In the following, we describe the steps during the opti-
mization phase of the model. First we use a data set of 5000
instances without SMOTE and a testing set of 2500 instances.
Table 11 shows the relative confusion matrix with the re-
call at the principal diagonal. The model-based on an ID3
algorithm with a maximum depth of 5 that uses the impurity
metric information gain has an averageclass accuracyHM

of 75.83 % with a significantly low recall in cluster 4 and a
high rate of people who were assigned to class 3 and belong
actually in class 4.

Table 12 shows a data set of 5000 instances with
SMOTE and a testing set of 2500 instances. The
averageclass accuracyHM has significantly increased to
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(a) GMM visualization with PCA (b) K-mean visualization with PCA (c) Spectral Clustering visualization with PCA

(d) GMM visualization with t-SNE (e) K-mean visualization with t-SNE (f) Spectral Clustering visualization with t-SNE

FIGURE 6: Clustering results for 3 clusters, using GMM, K-means, and Spectral Clustering algorithms and utilizing PCA, and t-SNE for
visualization

(a) K = 4, PCA, K-means (b) K = 5, PCA, K-means

(c) K = 4, t-SNE, K-means (d) K = 4, t-SNE, K-means

FIGURE 7: K-means with K = 4, and K = 5 and visualization with PCA, and t-SNE

81.72 %. The recall in class 4 has significantly increased to
73.68 % and there was also an increase in class 3, neverthe-
less the recall in class 1 and 2 has slightly decreased.

Next, the standard ID3 algorithm was extended in sev-
eral rounds of parameter testing and evaluation. First, we

introduced reduced error pruning with the pruning set with
2500 instances for reduced error pruning. Second, all leaves
with less than 4 instances in the training and pruning set
together were cut in a simple post-pruning approach. Third,
we have analyzed the tree and inserted some extra leaves
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(a) Visualization of K-mean with PCA using SMOTE

(b) Visualization of K-mean with t-SNE using SMOTE

FIGURE 8: Visualization of SMOTE using t-SNE, and PCA utilizing
K-mean with K = 4

FIGURE 9: Determine the size of the training set

TABLE 11: Confusion matrix of basic ID3 algorithm, maximum depth
= 5, imputity metric = IG

75.83* Predicted Instances

Actual

94.59 5.41 0 0 905
9.63 83.35 7.02 0 997
0.18 19.29 77.5 3.04 560
0 0 42.11 57.89 38

Instances 931 921 582 66 2500
*averageclass accuracyHM

in the following two cases where the ID3 algorithm would
return the probability of the parent node. First, if the class
label of the parent node for a higher feature value compared
to an existing leaf with a smaller feature value is smaller,

TABLE 12: Confusion matrix of ID3 algorithm, maximum depth = 5,
imputity metric = IG, SMOTE.

81.72* Predicted Instances

Actual

93.48 6.41 0.11 0 905
8.43 80.14 11.23 0.20 997
0.18 11.43 81.96 6.43 560
0 0 26.32 73.68 38

Instances 931 921 582 66 2500
*averageclass accuracyHM

the class label of the leaf with the highest feature value is
returned. Second, if the class label of the parent node for
a lower feature value compared to an existing leaf with a
smaller feature value is higher, the class label of the leaf with
the lowest feature value is returned.

The final result of these extensions is given in Table 13.
The averageclass accuracyHM has increased to 86.64 %
and the recall of class 4 to 86.83 % while there was no
decrease of the recall in any other class.

TABLE 13: Confusion matrix of ID3 algorithm, maximum depth = 5,
imputity metric = IG, SMOTE, post pruning, min samples = 4

86.64* Predicted Instances

Actual

93.48 6.3 0.22 0 905
7.72 81.84 10.23 0.2 997
0.17 9.46 85.18 5.18 560
0 0 13.16 86.83 38

Instances 924 926 586 64 2500
*averageclass accuracyHM

To validate this result as resilient and to avoid a “lucky
split” we have used a 4-fold cross validation. In a standard
setup with only training and testing set, the first fold is used
as the test set and the remaining 3 sets are used for testing.
Then the second fold becomes the training set and again the
remaining sets are used for testing. This procedure is repeated
until every fold has been used for training [24]. Therefore
with a standard 4-fold cross validation only 4 results can be
achieved. In our approach we have a testing, a pruning and
a training set. As shown in Table 14 each fold has a size of
2500 instances. We start with fold 1 for testing, fold 2 for
pruning and combine fold 3 and 4 because we require 5000
instances for the training. Then we swap the folds until every
combination was tested. This leads to 12 runs and produces
a more reliable cross validation result, also avoiding a lucky
split in the pruning set.

TABLE 14: Cross validation of the best result

Data set Fold 1 Fold 2 Fold 3 Fold 4
1 TEST PRUNE TRAIN TRAIN
2 TEST TRAIN PRUNE TRAIN
3 TEST TRAIN TRAIN PRUNE
4 PRUNE TEST TRAIN TRAIN
5 TRAIN TEST PRUNE TRAIN
6 TRAIN TEST TRAIN PRUNE
7 PRUNE TRAIN TEST TRAIN
8 TRAIN PRUNE TEST TRAIN
9 TRAIN TRAIN TEST PRUNE

10 PRUNE TRAIN TRAIN TEST
11 TRAIN PRUNE TRAIN TEST
12 TRAIN TRAIN PRUNE TEST
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Again, our approach is based on 5000 instances in the
training, 2500 instances for the pruning, and 2500 instances
for the test data. Using the harmonic mean, the 12 resulting
confusion matrices were summarized. From this, the preci-
sion, recall, and F1-Score were calculated, which was also
done for the final model. These results are shown in Table 15.

TABLE 15: Mean of all 12 cross validation results

Final Result Cross Validation
Class Precision Recall F1-

Score
Precision Recall F1-

Score
1 91.56 93.48 92.51 90.69 92.39 91.53
2 88.12 81.85 84.87 85.59 80.84 83.15
3 81.4 85.18 83.25 80.59 82.54 81.56
4 51.56 86.84 64.7 51.00 84.21 63.52
HM 74.14 86.64 79.90 73.09 84.77 78.50

So far we have evaluated the performance of the cluster-
ing and the performance of the classification based on the
clustering results. In our last step, we will use the centroid
of each cluster from the clustering result with K = 4 to
make a privacy prediction for each unknown feature value,
using the derived tree of the final classification result. For
example, if the first instance is classified in class 2, the feature
values of the centroid are set for all unknown feature values.
Thereby, we round each value in the centroid that is a vector
of R80 to integer values. Table 16 shows for the test data,
the result with the true Likert types from 1-6 and the result
with the linear merged Likert types as in the previous papers
from 1-3. Again, the possible feature values are mapped on
the Likert types. The accuracy for class k ∈ {1, 2, 3, 4}
is calculated by dividing the number of correctly predicted
feature values in the respective class (ŷi,k = yi,k) by the sum
of all feature values in that class (nk) similar to Equation 1.
The sum of all feature values can be computed as instances
in the respective class times features. To make the results
comparable to the previous papers we calculate the overall
accuracy similar to Equation 1. To get a better understanding
how the accuracy in the classes differs we use Equation 2 to
calulate the averageclassaccuracyHM based on the harmonic
mean. In this case we replace the recallk with the accuracyk.

TABLE 16: Overall accuracy based on harmonic and arithmetic mean
and per class accuracy using the cluster centroid (a vector of R80) to
predict the feature values in the scales from 1-6 and 1-3

Likert Class Accuracy Avarage- Overall
Types 1 2 3 4 classaccuracyHM Accuracy

1-6 83.08 62.99 57.64 51.66 61.90 68.87
1-3 95.02 79.36 73.11 65.63 76.86 83.33

For both scales, the accuracy for class 3 and 4 is much
lower compared to class 1 and 2. For example, 51.66 % of the
feature values in the range from 1-6 were predicted correctly.
In comparision to the chance of 16.67 % predicting 51.66 %
of the feature values of all test instances that were classified
in class 4 correct is still a good result. Taking into account
that guessing a feature value correctly on a scale from 1-
6 is much harder than guessing on a scale from 1-3, we
assess the results for the scale from 1-6 as the better result.
No information is lost by merging feature values and the

privacy prediction can be made more granular. Nevertheless,
the result for class 1 is much better compared to the other
classes. One reason for this could be that the median answer
in cluster 1 is 1 and the mean answer 1.2274 (see 9). This in
combination with the highest occurrence of feature value 1 is
likely to leverage the accuracy when predicting the feature
values of the fundamentalist. Taking another look at the
overall accuracy and the overall accuracyHM, the number of
possible feature values have to be taken into account. 68.87 %
of the feature values from 1-6 were guessed correctly which
is much better than the chance of 16.67 %. Nevertheless, the
accuracy in class 4 is far behind the accuracy in the other
classes. While the overall accuracy is still high, the overall
accuracyHM is slightly lower, indicating correctly that the
accuracy is not homogeneous over the 4 classes. Finally, in
all classes the prediction of the feature values is significantly
higher than the chance, so the overall model can provide
benefits to the users when making privacy setting predictions.

C. EXPLAINABILITY
Until now, the visualization of the clustering results were
presented and the choice for the size of training, pruning
and testing sets was justified. We have seen the evaluation
metrics precision, recall and F1-score and the final result
was validated with cross validation. In this section we will
add some more explainability with the aim to provide more
insights into how decisions are made by the model.

1) Clustering
To get better insights into the clustering results, we take a
look at the features that separate the data best, using the
Information Gain (IG). Guidotti et al. [20] mention feature
importance as an effective solution to provide global or local
explanations to a black box model. To calculate the feature
imortance, we use the IG as introduced in [24]. We have
chosen the IG as score for feature importance because the
IG will later be used as impurity metric in the classification.
First, we calculate the IG for each of the 80 feature values
using the 10,000 instances and the labels of the clustering
result. Figure 10 shows the features with the highest IG on
the right that separate the data best to the features with the
lowest IG on the left that separate the data worst. The overall
entropy of the data is 1.6349 bit. The closer the IG to the
entropy, the better a feature separates the data. Especially the
data purpose Behavior Analysis (D) and the category Cookies
(Web Browser) (11) are often represented in the top ranking.
In the left corner, the data purpose Providing the service (A)
is present.

While the IG for the whole data provides a good first
impression which feature is most important to separate the
data, in a second step we take a closer look at each cluster to
better understand the differences in the clusters. Therefore,
Figure 11 presents the IG, mean and median value for the
instances that are assigned to cluster 1 and cluster 2 with
an entropy of 0.9984 bit. Thereby, the figure shows only the
top 10 and worst features. In the top ranking on the right,
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FIGURE 10: Information Gain of all clusters

especially the data purpose Behavior Analysis (D) and Rec-
ommendation (E) are present as well as the category Cookies
(Web Browser) (11). A good separation of these features is
also indicated by the mean and median that are placed for
cluster 1 around the feature value 1 and for cluster 2 around
the feature value 2. While the IG of the features at the left
is significantly lower, the mean and median of the features
cannot be separated as well as compared to the features with
a higher IG. Especially the data purpose Providing the service
(A) is omnipresent.

FIGURE 11: Information Gain, mean and median of cluster 1 and 2

Comparing the instances of cluster 2 and cluster 3 (see
Figure 12) with an entropy of 0.9425 bit, the result is quite
similar to cluster 2 and cluster 3. For the features that separate
the data the best, mean and median are centered for cluster 2
close to the feature value 2 and for cluster 3 close to feature
value 3. For the features with a lower IG, this does not hold.

When it comes to the comparison of cluster 3 and cluster
4 (see Figure 13) with an entropy of 0.3414 bit, the results
look different. All features are well-separated, although the
features with a top-ranking are further apart. In the best and
worst ranked features, no favorites can be identified.

FIGURE 12: Information Gain, mean and median of cluster 2 and 3

FIGURE 13: Information Gain, mean and median of cluster 3 and 4

2) Classification

To increase the explainability of the classification, we focus
in this paper on the visualization of the decision tree. While
others like Huysmans et al. [23] show that decision tables for
small classification trees are more user friendly, our approach
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for a decision tree with 159 nodes builds on a reduced view
of the tree. Moreover, we do not show and count nodes that
return the probability of the parent node. While a tree with
159 nodes cannot be presented very well, the tree can be
pruned more restrictively. Figure 14 shows every leaf that did
not have a minimum number of 50 instances after the pruning
phase.
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FIGURE 14: Final result of the classification, min_samp = 50, colored
class probabilities

As a result of more restrictive pruning, the tree has only
33 nodes excluding nodes that would return the probability
of the parent node and a F1-score of 77.62 compared to 79.9
in the final result. The nodes are colored by the share of each
remaining class. This can be interpreted as the probability to
be classified to a specific class. The classification in the root
node is equal for every class because when using SMOTE,
all classes have the same probability. Instead of reducing the
tree size to a minimum, the Figures 16 and 17 show only a
summarized extract of the whole tree for 2 different paths.

Each node displays the feature acronym, the mapped class,
and the probability of each remaining class. The red errors
show the answers of the user and indicate the indivudal
path of a user through a tree. Besides the nodes that are on
the red path, all other possible answers for these nodes are
displayed with their probability. By this, users can see how a
different answer in one of the nodes would have influenced
the classification result. Generally, a different answer closer
to the root node has a bigger impact on the classification
compared to the features closer to the leaves. The closer a
feature to the root node, the better a feature separates the
whole data into 4 classes and the higher the impact of an
answer. Going down the branch, e.g. answering feature B15
in Figure 16 with a 6 has the same result as answering a 3.
This shows that the impact of a strongly deviating answer is
lower.

D. EVALUATION OF DIFFERENT CLUSTER SIZES K ON
MODEL PERFORMANCE
In Section VI-A Clustering we chose the cluster size K =
4 because of the explanability and the mapping to the
Westin/Harris Privacy Segmentation model. We have already
shown that this choice is reasonable because of a positive
Silhouette Score for all clusters. In this section we are com-
paring the model performance for clusters with K = 3 and
K = 5, also to get a better idea of the choice K = 4.

To rerun the experiment, we utilize a simplified cross
validation using only the splits 1, 5, 9, and 10 from Table
14. This approach provides more resilient testing results

compared to a single run because every set was used once
as a test set. The parameter settings used for the extended
ID3 are the same as for K = 4 (see Table 17). Comparing
the score for K = 3 with K = 4 (see Table 15) and K = 5
the Precision, Recall and F1-score are the highest over all
classes and in the harmonic mean. In comparison to that, the
F1-score for K = 5 is low, especially for class 3. Taking
again a look at the Silhouette Score (see Table 7) the negative
score of −0.04 has already indicated that there exist more
instances that could be placed in another class than instances
that are best placed in class 3. This is now also reflected in
the classification result.

TABLE 17: Precision, Recall and F1-Score for K = 3 and K = 5,
ID3 algorithm: maximum depth = 5, imputity metric = IG, SMOTE,
post pruning, min samples = 4

K = 3 K = 5
Class Precision Recall F1-

Score
Precision Recall F1-

Score
1 90.44 92.76 91.59 91.02 91.87 91.44
2 86.35 82.43 84.34 83.17 74.60 78.65
3 85.13 88.46 86.76 52.59 69.58 59.90
4 77.14 70.26 73.54
5 57.35 78.64 66.33
HM 87.25 87.68 87.46 76.21 69.03 72.44

Table 18 shows the results for the prediction of the feature
values on a likert scale 1-6, based on the clusters’ centroids.
Although the overall accuracy only slightly differs from each
other, the averageclassaccuracyHM for K=3 is a little bit
higher.

TABLE 18: Overall accuracy based on harmonic and arithmetic mean
and per-class accuracy using the cluster centroid (a vector of R80) to
predict the feature values in the scales from 1-6

K Class Accuracy Avarageclass Overall
1 2 3 4 5 accuracyHM Accuracy

3 83.04 63.12 59.11 66.96 69.24
4 83.08 62.99 57.64 51.66 61.90 68.87
5 85.47 70.23 41.60 62.57 58.07 60.11 68.84

For the reduced likert scale with the feature values 1-3,
again the overall accuracy only slightly differs. Nevertheless,
the averageclassaccuracyHM for K=4 is somewhat lower.

TABLE 19: Overall accuracy based on harmonic and arithmetic mean
and per-class accuracy using the cluster centroid (a vector of R80) to
predict the feature values in the scales from 1-3

K Class Accuracy Avarageclass Overall
1 2 3 4 5 accuracyHM Accuracy

3 94.88 79.69 75.05 82.38 83.96
4 95.02 79.36 73.11 65.63 76.86 83.33
5 96.08 86.06 63.55 75.19 77.17 78.10 83.50

Although the comparison of different Ks has shown that
K = 3 performs best for both likert scales, the model
performance seems to be roughly at the same level, so we
conclude that it is fine to use K = 4. Another reason for
this choice is the fourth class that maps much better to the
privacy class of unconcerned from the Westin/Harris Privacy
Segmentation model than class 3 for K = 3 does.

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3074676, IEEE Access

Löbner et al.: Explainable Machine Learning for Default Privacy Setting Prediction

E. PERFORMANCE EVALUATION
In this section we give an impression of the performance of
the tree parser in a Graphic User Interface (GUI) prototype
that is built with the Python package tkinter.

Figure 15 shows the GUI prototype that is used to access
the tree parser. The user can see the data purpose (A-E)

FIGURE 15: Prototype of GUI to interact with the tree parser

and the Category (1-16). The first feature a user is asked
about is always the root node D11 with the data purpose
Behavior Analysis and the category Session information (e.g.,
Cookies). The user can use the radio buttons to choose the
own privacy preference from 1-6 for the given feature. The
input is confirmed with the continue button. The tree parser
then follows the given feature value in the decision tree and
the GUI asks to provide the privacy preference (feature value)
for the feature of the new child. The times were measured 5
times and the mean is provided. For testing we have used
the feature values as shown in Figure 16. Starting the GUI
takes around 1 seconds. When the user chooses a radio button
and clicks continue it takes less than 0.01 seconds to display
the next node based on the provided answer. Generating the
classification into a cluster takes less than 0.2 seconds. To
generate a path such as in Figure 16 and Figure 17 it takes
around 1 second. We have not implemented the prediction of
the single feature values yet but we estimate the generation of
the missing feature values to take less than 0.02 seconds. The
estimation will not be time-intensive because the rounded
feature values of the 4-cluster centroids are already known
and the correct centroid has just to be returned based on the
classification result.

Generally, the critical performance bottleneck in future
will be the GUI and the users connection. Nevertheless, the
provided impression of the GUI performance shows that the
model can be used without any negative delay in a real world
example.

VII. DISCUSSION
In this chapter, we will discuss and evaluate how well the
requirements are met by the presented model and provide a
more detailed interpretation of the current results.

A. FEATURE SELECTION
R 1 aimed to find an appropriate feature selection. This
requirement is met perfectly by using a decision tree because
users can follow their path based on their provided answers.

Thereby each question contributes to classify the users into
one of the 4 classes. As shown in Section VI-C1 there is a
huge discrepancy of most relevant features between cluster 4
and the other clusters. This underpins our approach to have
an appropriate feature selection. We have also restricted the
tree to a depth of 5 so that maximum 5 feature values can
be set by the user. A deeper tree has also been tested but
the gain in accuracy is negligible. Taking a closer look at
the decision tree, it stands out that in the special case of
answering feature D11 with a feature value of 6, the tree
immediately classifies the user to the lowest privacy concern.
One could argue that this behavior can cause errors if the user
makes a mistake because the decision is made solely based on
one answer. Moreover, the user might mistrust the model if a
decision is made too quickly. Another point of discussion is
what happens if the user does not give an answer at all. Using
SMOTE, the probability to belong in one of the four classes
is equal in the root node because each cluster that was used
to train the classification tree has the same size. Nevertheless,
this does not reflect the real ratio that would map most of the
users as a fundamentalist in class 1. While on the one hand,
an error message can be raised and the process is canceled,
on the other hand, setting the most restrictive privacy setting
that maps to a fundamentalist is also reasonable. Overall,
the feature selection with the tree parser worked quite well
and can ask user-specific questions by following the branches
through the tree.

B. INTERPRETABILITY
R2 is about increasing the explainability of the presented
model. In this approach we have taken a closer look at the
clustering of submodel 3.1 using a visualization of the results
and the IG. Alternative results that are not part of our final
model have been analyzed to create a better understanding of
the trade-off between accuracy and interpretability.

Especially the IG can provide deep insights into how the
model makes decisions because also our extended classifi-
cation algorithm ID3 is based on this impurity metric. One
drawback of using pure IG is its dependency on the entropy.
We have seen that if we take only the data from cluster 3
and cluster 4 the entropy is only 0.3414 bit. This indicates
that there are difficulties in separating this data. This could
be one reason why Figure 13 shows a different separation of
the features that split the data the best, compared to the other
clusters.

In the classification result, we provide simplified and sum-
marized tree paths that we assess to be easily understandable
at a glance by experts and non-experts. Especially displaying
the probability of each class per node aims to give the user a
feeling how her answers have influenced her classification re-
sult. This has, on the one hand, the advantage that the user can
see quickly what would have happened if a different choice
was made, on the other hand, the whole tree is not disclosed.
Therefore, misuse such as model inversion attacks that aim
to reveal sensitive features or recover training data [17] can
be complicated. In case the user interrupts the algorithm in

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3074676, IEEE Access

Löbner et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Feature: D11
None

Feature: B14
Fundamentalist

1

2
3
4
5
6

1
2
4
5
6

Feature: C4
Fundamentalist

3

Feature: B15
Fundamentalist

2

1
3
4
5
6

1

2
4

5
6

Leaf
Pragmatist (low)

3

FIGURE 16: Path of answering 1, 3, 2, 3, with colored class probabilities and short branches
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FIGURE 17: Path of answering 4, 1, 4, 3, with colored class probabilities and short branches

one of the child nodes, the algorithm could easily return the
probability of the current node but as Figure 16 shows really
well, this can easily result in a misclassification. E. g. for the
first and second child, the classification would map the user
as a fundamentalist, for the third child, the decision is very
close to chance and only the last question brings confidence.
In contrast to this, Figure 17 elucidates that the user in this
scenario is not 100 % fundamentalist as classified. This is a
very important information for the user because it indicates
the reliability of her personalized classification. While most
user groups have a high probability to be assigned to one
specific class, the prediction is less reliable for a small
group of users. The main reason for this is data shortage
in a specific path. Although noisy nodes are compensated
by error pruning, we assess user feedback as essential to
further improve the classification tree and to identify noisy
subgroups in the dataset that were not revealed in the post-
pruning. Very restrictive pruning (see Figure 14) has been
withdrawn because balancing accuracy and explainability is
very difficult and the loss of accuracy for this example could
not be justified well.

C. ENHANCE EVALUATION METRICS

R3 is about introducing more advanced evaluation metrics.
To evaluate the clustering we have presented the Silhouette
Score in Table 8. To have the overall Silhouette Score of a
two-cluster result is very interesting because a first impres-
sion of the maximum possible score is achieved. Although
a score close to 1 indicates a perfect separation of the data,
this appears to be unrealistic for the presented data. While the
first cluster is always well-separated from the other clusters

with a score of around 0.45 for each K, we face a lot of
difficulties in the other clusters. One reason is a high ratio
of instances with a feature value of 1. These instances cannot
be assigned to another cluster which increases the silhouette
score of cluster 1. In contrast to this, the feature values for
the other clusters are much more diverse which increases the
probability for an instance to be placed in another cluster.
Surprisingly, there are nearly no instances with continuous
feature values of 6, which causes a lower score for the higher
clusters. This effect is also shown in the mean of cluster 4 for
K = 4 where the mean answers are with 4.7703 further away
from 6 than the mean answer of cluster 1 with 1.2274 from 1.
This is also reflected in the uneven distribution of instances
over the clusters.

In the classification result we have focused on the con-
fusion matrix and related scores. In Tables 11, 12 and 13
the increase of the recall by expanding the ID3 algorithm
is clearly illustrated. Taking a closer look at Table 15 the
low precision of class 4 can be easily detected. Here, the
precision describes how many of the instances that have been
assigned to class 4 are actually in class 4. As shown in
Table 13 there are actually 38 instances in class 4 what is
quite low compared to the size of the other classes. Therefore,
a small ratio of people that are predicted in class 4 and are
actually in another class has a disproportional effect on the
precision of class 4. Generally, for such an imbalanced class,
information from the precision is biased and weak. Moreover,
the noise cannot be eliminated by using SMOTE because new
instances are created based on the existing ones. Reasoned by
the fact that the F1-score is calculated based on the harmonic
mean of precision and recall, the result is biased by the class
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4 precision score. Nevertheless, at least we learn that the size
of class 4 has a negative effect on the model performance.
Comparing the final result and the cross validation, we learn
that a slightly lower performance of the classification can be
expected in the real world.

Besides the performance of each individual submodel,
also the performance of the overall model has to be taken
into account, which is presented in Table 16. Under equal
conditions that include only three different feature values and
the same evaluation metric for accuracy (cf. Equation 1), the
performance of model 3 with an overall score of 83.33 % is
in between model 1 with an average overall score of 85 %
and model 2 with an average score of 82 %. Nevertheless,
the low score in class 3 and 4, especially for 6 feature values
cannot be neglected. Taking into account a study of [10] who
find that “users do not do what they say, and they do not
know what they claim to know” users face serious problems
especially when answering questions about privacy-related
technologies they claimed to know. This statement implies
that the data is biased and does not reflect the real behavior
of the user.

D. IMPACT
As shown in the user evaluation, users evaluate tools that pro-
vide support in privacy setting as very helpful. Nevertheless,
one point of criticism was the non-transparent decision mak-
ing of the model. With the model 3 approach, the decision
and reliability for every user should be much clearer and the
understanding of the model structure is facilitated.

Regarding the dissemination of such a tool in Europe,
several advantages can be emphasized. First, the burden
of setting privacy preferences is leveraged because the re-
quired time to find personalized preferences is reduced to
a minimum while at the same time the trust in the model
is increased. Second, our approach enables a wide range of
different features that can be personalized with our tool. With
such a solution, companies do not need to group the features
and can receive much more precise settings while the privacy
of the user is maximized. Third, by using such a tool, general
privacy awareness is increased because the user gets insights
into her own privacy behavior. With our tool of mapping and
visualization it is even possible to receive feedback about
one’s own privacy sensitivity. Implementing tools for privacy
setting prediction can also be seen as a chance for compa-
nies to stand out with a data-friendly service. By increasing
privacy awareness also the discussion about fair handling of
private data can be pushed forward and vulnerabilities in the
data protection regulations which a few market participants
take advantage of become more likely to be fixed.

E. LIMITATIONS
The first limitation of the presented model is the struggle
of users to answer privacy-related questions as described
by Consolvo et al. [10]. If the user cannot assess her pri-
vacy concern if asked directly, the whole model is some-
how biased. Regarding the presented data, users seem to

overestimate their own privacy concerns. In general, this is
not a major issue because the privacy settings will be more
restrictive and a user might think twice to disclose private
data if a service is denied based on the predicted settings.

Second, there could also be biases in the sampling pro-
cess. For example, maybe certain groups of people are not
interested in participating in studies about privacy because
they are not concerned about privacy at all and cannot see
any benefit from it. The other way around, people that are
concerned about privacy so much that they do not want to
participate in any study at all might also exist.

Third, the fourth cluster was very small and not well-
separated from the other clusters. To use this model in a
real-world scenario, more data for this cluster in particular
is likely to significantly increase the accuracy.

Fourth, the presented model 3 consists of 2 submodels that
can be described as whitebox model. While whitebox models
are known to be easily interpretable, more complex blackbox
models such as deep neuronal networks might achieve a
higher accuracy.

Fifth, for interpretable ML further approaches such as
adversarial training to increase adversarial robustness, and
influential samples measuring how the model’s output is
influenced if a certain data point is removed [4] might be
interesting to test in future. Moreover, especially for black-
box models the usage of local interpretable model-agnostic
explanations (LIME) could be used [21].

VIII. CONCLUSION
In this paper, we have presented and evaluated an explainable
machine learning model for default privacy setting prediction
based on a K-means clustering and extended ID3 classi-
fication tree. Finally, we mapped the users based on their
classification to one of these clusters that were built upon
the privacy preferences of a training group and used the
centroid of the respective group for privacy setting predic-
tion. Compared to the previous studies, we have elicited
and enhanced the requirements of building an appropriate
feature selection with the tree-based approach, introducing
the tree parser that asks the user individual questions based
on the classification tree and follows the respective path
of the tree until a classification can be made. We provide
enhanced interpretability by visualizing the classification and
clustering results and investigating the information gain of
the most and less important features in each cluster and the
probability to be classified to a certain class in each node in
the classification tree. Moreover, we give insights into what
would have happened if a different answer were given. We
enhance the evaluation metrics by introducing the silhouette
score to evaluate the clustering and the confusion matrix
based metrics recall, precision and F1-score. Besides this,
we use the averageclassaccuracyHM to detect minority classes
and biases in the classification result. Finally, we compared
the scores of the presented explainable model and the two
previous models. Although the accuracy is not distributed
equally among all clusters, we conclude that with a slight loss
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of overall accuracy from 85 % to 83.33 % the interpretability
and reliability of the model have been significantly increased.
In future studies, a user evaluation of the presented model and
especially the methods to increase interpretability are of par-
ticular interest. For the future, another user evaluation using
the new explainable Model 3 is of high interest, to evaluate
the usability of the explainability and the trustworthiness of
our privacy setting prediction approach. Such an evaluation
could also test different ways of displaying information and
provide more insights into the required depths for increasing
transparency and explainability of our presented approach.
A further question to answer in future is how a direct user
feedback on the user-specific privacy setting prediction, e.g.
the correction of some of the predicted feature values by
the user, can be used to improve the ML algorithm. Such
improvements can include keeping the algorithm up to date
or extending the decision tree for groups of instances that
were underrepresented in the training data.
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