
Universität Augsburg

Report on the RS3 Topic Workshop

“Security Properties in Software

Engineering”

Martin Ochoa, Sebastian Pape, Thomas
Ruhroth, Barbara Sprick, Kurt Stenzel, and

Henning Sudbrock

Report 2012-02 February 2012

Institut für Informatik
D-86135 Augsburg

Copyright c© Martin Ochoa, Sebastian Pape, Thomas Ruhroth,
Barbara Sprick, Kurt Stenzel, Henning Sudbrock
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Report on the RS3 Topic Workshop

“Security Properties in Software Engineering”∗

Augsburg, May 12–13, 2011

and its Follow-up Meeting

Dortmund, August 15-16, 2011

Martin Ochoa2, Sebastian Pape2, Thomas Ruhroth2, Barbara
Sprick1, Kurt Stenzel3, and Henning Sudbrock1

1FM-SecEng (TU Darmstadt, Modeling and Analysis of
Information Systems)

2MoDelSec (Dortmund University, Software Engineering)
3IFlow (Augsburg University, Software and Systems Engineering)

Technical report 2012-02†

Augsburg University

∗This work was sponsored by the priority programme 1496 “Reliably Secure Software
Systems” of the Deutsche Forschungsgemeinschaft DFG.

†Available at http://opus.bibliothek.uni-augsburg.de/volltexte/2012/1865/

1

Contents

1 Introduction 3

2 Formalizing Security Properties for a Reviewing System 4
2.1 Security properties in a reviewing system (Group 1) 5

2.1.1 System Specification . 5
2.1.2 Security Requirements Specification 6

2.2 Security properties in a reviewing system (Group 2) 11
2.2.1 Informal Security Requirement 11
2.2.2 1. Step: Security Policy 12
2.2.3 Step 2: Identifying Events 12
2.2.4 Step 3: Select BSPs . 13
2.2.5 Step 4: Modify Security Policy 13
2.2.6 Ideas for a Systematic Approach 14
2.2.7 Formalization in UMLsec 15
2.2.8 Further Ideas . 16

3 Formalizing Security Properties for
Mobile Applications 16
3.1 Common Session on the General Methodology 17

3.1.1 Step 1: Finding Informal Definitions of Information Flow
Scenarios . 17

3.1.2 Step 2: Refining the Requirements to Comply with the
Chosen Setting . 17

3.1.3 Step 3: Finding Adequate Meanings of MAKS-BSPs . . . 18
3.2 Corrections in Basic Security Properties (Group 1) 19
3.3 Formalizing Integrity with MAKS (Group 2) 21

4 Lessons learned and Conclusion 23

A A Collection of Security Properties 24
A.1 Smart Phone Apps . 24
A.2 Separation Kernels . 25
A.3 Multi-applicative Smart Cards 25
A.4 Conference Reviewing Systems 26
A.5 E-Voting . 26
A.6 Web Server Applications and Browsers 27
A.7 Intrusion Detection and System Administration 27
A.8 Enterprise Systems . 27
A.9 Cloud Computing . 28
A.10 Travel Planner: General Requirements 28
A.11 Travel Planner: Specific Requirements 28

References 30

2

1 Introduction

The DFG priority programme “Reliably Secure Software Systems”1 (RS3) aims
at a property centric approach to security. Within the priority programme,
the cluster “Security Engineering” addresses questions of how such a property
centric approach can already be considered at design time of a system.

Users and providers of software have certain security requirements on the
software they use. In order to ensure that software meets these requirements,
developers of software must consider the requirement already at design time,
even during early phases. However, it has turned out to be unclear how con-
crete security requirements can be expressed in terms of security properties in
the formalisms used during different phases in software development. How can
security requirements that are expressed in natural languages be specified in
the various formal and semi formal specification languages like e.g. UML, pro-
cess algebras, trace systems, etc? The focus shall be on end-to-end security
requirements modeled with information flow properties.

On the other hand, there are different security properties like, e.g. noninter-
ference properties contained in the literature, that can be specified in various
of these specification and modeling formalisms. However, it is not always clear,
what these properties mean in terms of concrete security requirements.

The RS3 cluster conducted a two day topic workshop at the university of
Augsburg2 and a 1.5 day follow-up workshop at TU Dortmund3, where these
questions were addressed and the relation between ’real’ security requirements
and formal security properties expressed in various modeling and specification
languages was investigated.

Goals of the workshops were to exchange and gain insights on modeling and
specifying security properties in security engineering and to acquire a common
understanding on the following questions:

• What are relevant security requirements in practice?

• What are appropriate formalisms for specifying such requirements as for-
mal security properties? What role plays the software development pro-
cess?

• How can security properties be modeled/specified in these formalisms?

• What do security properties specified in the various formalisms mean in-
tuitively? How can formal security properties be (re-)translated into user
friendly languages? There questions are examined for concrete examples.

This report is a compilation of results from the two workshops as well as discus-
sions from the RS3 annual meeting held at Karlsruhe Institute of Technology in

1http://www.reliably-secure-software-systems.de/
2May 12–13, 2011, projects FM-SecEng (TU Darmstadt:Barbara Sprick, Henning Sud-

brock), IFlow (University of Augsburg: Peter Fischer, Kuzman Katkalov, Gerhard Schellhorn,
Kurz Stenzel), MoDelSec (TU Dortmund: Martin Ochoa, Sebastian Pape), MoVeSPAcI (TU
Kaiserslautern: Christoph Feller)

3August 15–16, 2011, projects FM-SecEng (TU Darmstadt:Barbara Sprick, Henning Sud-
brock), IFlow (University of Augsburg: Peter Fischer, Kuzman Katkalov, Kurt Stenzel),
MoDelSec (TU Dortmund: Jan Jürjens, Martin Ochoa, Sebastian Pape, Thomas Ruhroth),
MoVeSPAcI (TU Kaiserslautern: Christoph Feller), WS4Dsec (University of Rostock: An-
dreas Lehmann, Stefan Pfeiffer)

3

September 2011. It includes approaches to formally model security requirements
of a reviewing system (Sect. 2); approaches to formally model confidentiality and
integrity requirements for mobile applications (Sect. 3); lessons learned (Sect. 4),
and a categorized collection of informal security requirements (Appendix A).

2 Formalizing Security Properties for a Review-
ing System

For the concrete formalization of security properties, we selected the scenario of
a reviewing system like EasyChair, that for example has the following security
requirements:

1. Only PC members can see all submissions.

2. Only after submitting a review can a reviewer see other reviews.

3. A reviewer does not know if other reviewers have already submitted re-
views.

4. Reviewers are not influenced by other reviewers.

5. Persons with multiple roles have restricted privileges (e.g. a PC member
that also submits a paper can see all reviews except for her own paper
during the review phase).

6. Reviewers are anonymous (to authors and possibly each other).

7. In a double blind review process the reviewers do not know the identities
of the authors.

8. Only accepted papers are made public, and only after the end of the review
phase, but statistics about submissions are published.

9. Reviews are never deleted, all remain accessible. A user cannot cause a
review to become invisible.

10. A reviewer can only submit reviews to papers she was assigned for.

11. A reviewer may not write (or view) reviews for papers with a conflict of
interest.

12. Authors are anonymous until after bidding.

13. An author (paper submitter) cannot see other submissions.

An important feature of a reviewing system is that it can be divided into several
phases with different security requirements. After the end of one phase infor-
mation is disseminated that was secret before. For example, an author does not
see other submissions, but in the end gains knowledge about accepted papers,
or bidding on papers for reviewing may be blind.

In two groups, we explored how to formalize some of the security properties
in this scenario.

4

2.1 Security properties in a reviewing system (Group 1)

The participants of group 14 formalized security requirements of this scenario
with UMLsec [Jür05] as well as in the Modular Assembly Kit for Security
[Man00, Man03]. One focus of the work was the question of how to specify
the different phases of the reviewing system without specifying a detailed sys-
tem model. Another focus was to formalize and analyze the formalization of a
seemingly simple security requirement.

2.1.1 System Specification

We consider a system that manages paper submission, paper reviewing, and au-
thor notification (like, for instance, Easychair). We model the following phases
of the reviewing system:

Phase 1 Determining the program committee
Phase 2 Registration of authors and submission of articles
Phase 3 Assignment of papers to reviewers
Phase 4 Reviewing the papers
Phase 5 Acceptance respectively rejection of articles
Phase 6 Notification of Authors
Phase 7 Publication of accepted articles

To specify the system formally, we use the concept of an event system. An
event system consists of a set of events E and a set of possible traces Tr ⊆ E∗,
which is prefix-closed. An event e ∈ E models an event occurring during a
system run, and a trace τ ∈ Tr models a possible system run by the sequence
of events that occur in the system run.

The set of events

For defining the set of events, we consider the following sets that we do not
specify further: A set of persons P , a set of articles A, and a set of reviews R.
Persons can be both reviewers and authors. We also considered modeling re-
viewers and authors with different (but not necessarily disjoint) sets, but here
we just use one set.

We define the set of events as the union of all sets specified in the following
list. The list is structured by the phase of the reviewing system in which an
event typically occurs. For simplicity, we assume that each article is written by
a single person (and not by a list of persons).

4Christoph Feller, Kuzman Katkalov, Martin Ochoa, Gerhard Schellhorn, Henning Sud-
brock

5

Phase 1
{addToPC (p) | p ∈ P} person p added to the PC
(alternative: {addToPC (X) | X ⊆ P} persons in X added to the PC)

Phase 2
{register(p) | p ∈ P} person p registers as an author
{p-submit(a, p) | a ∈ A, p ∈ P} submission of article a by person p
{p-resubmit(a, a ′p) | a ∈ A, p ∈ P} resubmission – article a by person

p is replaced with article a ′

Phase 3
{assign(a, p) | a ∈ A, p ∈ P} article a is assigned to reviewer p

Phase 4
{download(a, p) | a ∈ A, p ∈ P} reviewer p downloads the article a
{r -submit(r , a, p) | r ∈ R, a ∈ A, p ∈ P} reviewer p submits review r for

article a
{r -view(r , a, p1, p2) | r ∈ R, a ∈ A, p1, p2 ∈ P} reviewer p2 reads review r of

reviewer p1 for article a

Phase 5
{accept(a) | a ∈ A} PC marks article a as accepted
{reject(a) | a ∈ A} PC marks article a as rejected

Phase 6
{notify(p, a, r , b) | p ∈ P , a ∈ A, r ∈ R∗, b ∈ B} author p is notified about

acceptance/rejection (modeled by
boolean value b) of article a,
receiving the reviews in the list r

Phase 7
{publish(a, p) | a ∈ A, p ∈ P} Article a by author p is published
{statistics(n,m) | n,m ∈ N} statistics about acceptance rate

are published (n articles accepted,
m articles submitted)

The set of traces

We specify the set of traces via a state chart. Each state corresponds to a
phase of the reviewing system, where only events corresponding to that phase
are enabled (possibly with preconditions). Transitions from one phase to the
following phase do not correspond to an event. The state chart is displayed
Figure 1.

2.1.2 Security Requirements Specification

We considered the following two security requirements for the reviewing system:
1. The confidentiality requirement that reviewers must not learn about re-

submissions of an article.

6

Phase1

addToPC (p)/
PC = PC ∪ {p}

Phase2

register(p)/
A = A ∪ {p}

[p ∈ A ∧ a 6∈ P |1]
p-submit(a, p)/
P = P ∪ {(a, p)}

[(a, p) ∈ P]
p-resubmit(a, a′, p)/

P = (P \ {(a, p)}) ∪ {(a′, p)}

Phase3

[a ∈ P |1 ∧ p 6∈ authors(a) ∧ p ∈ PC]
assign(a, p)/

ASG = ASG ∪ {(a, p)}

Phase4

[(a, p) ∈ ASG]
download(a, p)

[(a, p) ∈ ASG]
r-submit(r , a, p)/

REV = REV ∪ {(r , a, p)}

[(a, p2) ∈ ASG ∧ (r , a, p2) ∈ REV
∧(r , a, p1) ∈ REV]
r-view(r , a, p1, p2)

Phase5

[∃p, r (r , a, p) ∈ REV]
accept(a)/

ACC = ACC ∪ {a}

[∃p, r (r , a, p) ∈ REV]
reject(a)/

REJ = REJ ∪ {a} Phase6

[if b = 1 a ∈ ACC else a ∈ REJ]
notify(p, a, r , b)

Phase7

[a ∈ ACC]
publish(a, p)

[|ACC| = n, |ACC ∪ REJ| = m]
statistics(n,m)

Figure 1: State chart specifying the traces of the reviewing system

7

2. The integrity requirement that reviewers must not prohibit that other
reviewers read a given review.

Our goal was to specify these security requirements with MAKS, the Mod-
ular Assembly Kit for Security Properties [Man00, Man03]. In the following,
we provide the resulting formal definitions for the first of the two security re-
quirements, as well as information on what we learned in the process of the
specification.

Reviewers must not learn about resubmissions – first approach

In a first step, we characterized the requirement more precisely:

Property A: “Reviewer Rev does not learn that article Art has
been resubmitted (i.e., that a new version of the article has been
submitted), unless Rev submitted Art himself as an author of Art .
However, Rev may learn that Art has definitely not been resubmit-
ted.”

The first step was defining an appropriate view:
• The set V of visible events contains all the events in which Rev is directly

involved, and which Rev can hence observe:

V = {download(Art ,Rev), r -submit(r , a,Rev), r -view(r , a, p,Rev),

p-submit(a,Rev), p-resubmit(a,Rev) | r ∈ R, a ∈ A, p ∈ P}

• The set C of confidential events contains the events where a new version
of the article Art is submitted (but not by Rev):

C = {p-resubmit(Art , p) | p ∈ P ∧ p 6= Rev}

• The set N contains all remaining events:

N = E \ (V ∪ C)

The second step was to select appropriate basic security predicates (BSPs).
We quickly decided that we need a BSP that requires the deletion of confidential
events, as reviewer R must not learn that a resubmission event occurred (but
may learn that no resubmission event occured). After some more discussion, we
convinced ourselves that the BSP R (“Removal”) is sufficient, with the following
reasoning:

• For each trace containing resubmission-events, R requires that there is
another trace without any resubmission-events, such that the projections
of both traces on events in V are equal (i.e., reviewer R cannot distinguish
the two traces from his observations).

• In consequence, reviewer R can never tell from his observations that paper
Art was resubmitted (as by R, at least one system behavior generating
the same observations contains no resubmission-event).

In our discussion we also considered choosing the BSP D (“Deletion”, which
is stronger than R). Hence, we asked ourselves which intuitive security require-
ment we would have captured with the BSP D. We described it as follows:

Property B: “Reviewer Rev does not learn whether a new version
of article Art was submitted, even more, Rev does not learn how
often a new version of article Art was submitted.”

8

We became the feeling that it was difficult to choose the “right” BSP that
adequately characterizes the intuitive security requirement. In particular, we
were not completely convinced whether we had selected the right BSP. Moreover,
we wanted to apply an approach for determining adequate BSPs without having
to try different BSPs (respectively combinations) until finding one that seems
to fit. Such an approach is described in the following section.

Reviewers must not learn about resubmissions – second approach

We followed the following methodology:
1. Step 1: Determine one or more closure properties that we believe to cap-

ture the informal security requirement.
2. Step 2: Determine for each of the closure properties which informal intu-

ition it captures. In particular, discriminate the different closure proper-
ties with the informal intuitions.

3. Step 3: Select the closure property for which the informal intuition reflects
the informal security requirement best. If necessary, make the informal
security requirement more precise for this.

4. Step 4: Determine which combination of BSPs best captures the closure
property, or, if no such combination captures it, which combination could
be used as an approximation to the closure property.

We applied this approach for our property:

Step 1. A discussion resulted in the following three different closure proper-
ties:

∀n ∈ N : ∀τ ∈ Tr : length(τ |C) = n =⇒ P,

where P is one of the following three formulas:
1. ∃τ ′ ∈ Tr : (length(τ ′|C) < n) ∧ (τ |V = τ ′|V)
2. ∃τ ′ ∈ Tr : (length(τ ′|C) 6= n) ∧ (τ |V = τ ′|V)
3. ∀n′ ∈ N : ∃τ ′ ∈ Tr : (length(τ ′|C) = n′) ∧ (τ |V = τ ′|V)

Step 2. We determined the following informal intuitions captured by the
above closure properties:

1. Reviewer Rev does not know whether a new version of article Art was
submitted, but Rev could deduce the maximal number of resubmissions
for Art .

2. Reviewer Rev does not know whether a new version of article Art was
submitted, but Rev could narrow down the number of resubmissions to
two possible values.

3. Reviewer Rev has no information about how often a new version of article
Art was submitted.

Step 3. We agreed that the third closure property best captures the security
requirement we want to specify.

Step 4. For capturing the selected closure property, we decided that we need
one BSP requiring the deletion of confidential events, and one requiring the
insertion of confidential events. For example, we could choose the BSPs IA and
R, or the BSPs IA and D, where the admissibility condition for IA expresses
that resubmit-events need only to be inserted in the submission phase of the

9

system. Our reasoning was as follows: Given a trace with n resubmission events,
R respectively D guarantee that there is a trace with 0 resubmission events,
and IA then guarantees that there are traces with n′ resubmission events for
arbitrary n′.

The following open questions remained and were not discussed in detail due
to time constraints:

• Are, for our example, IA and R equivalent to IA and D?
• Should we choose backwards-strict BSPs (BSIA and BSD) over the non-
strict variants (IA and D)?

Reviewers must not learn about resubmissions – using UMLsec

As discussed previously, through the Reviewing System exercise we focused
on using MAKS for the specification of the security properties. We wanted
however to compare this methodology to the specification of the same security
properties using the UMLsec formalism [Jür05]. Although UMLsec was not
designed to deal with information flow properties, it is however interesting to
see how it compares to MAKS and how one could benefit from both approaches
towards reaching an industrially applicable formally based security analysis.

UMLsec background In the UMLsec profile, there are two stereotypes that
allow to define information flow security properties on UML state charts, namely
〈〈 no-down-flow 〉〉 and 〈〈 no-up-flow 〉〉. They have an associated tag { high } that
allows to define which methods/attributes of the class (which behavior is repre-
sented by the state chart) are considered ‘high’. All methods/attributes of the
class which do not have the associated tag { high } are considered as associated
with the tag { low }.

Intuitively, a UMLsec state-chart is a message-transforming function that
maps sequences of input messages into sequences of output messages. Input
messages are just calls to the interface methods with concrete parameters (if any)
and output messages are the actions triggered by the input messages including
possibly the return values of methods.

The security requirement of 〈〈 no-down-flow 〉〉 is that there exists no pair of
input sequences that is equal after deleting the ‘high’ messages and such that
the two outputs defer (also after purging the high messages). This semantics are
inspired in the classical non-interference definition (Goguen/Meseguer, [GM82])
between two groups of users. Indeed, the classical definition requires that a
group of users (for example the low users) sees the same output if another
group (high) executes commands or not. Although very similar in nature and
perhaps even equivalent, one natural question that arose in our discussion of
the UMLsec definition was:

Are the UMLsec non-interference stereotypes formally comparable to the
Goguen/Meseguer definition?

This is an interesting point to follow up, since to the best of our knowledge
there is no such formal comparison in the UMLsec related bibliography.

UMLsec vs. MAKS The requirement ‘Reviewers must not learn about
resubmissions’ involves only two user groups, that is the reviewers and a sub-
mitter. Therefore it is quite natural to try to map this to the high and low user
levels allowed by the UMLsec definition. Given this and an explicit state chart

10

representing the behavior of the reviewing system it is in principle possible to
decide whether it respects the non-interference stereotype 5 .

On the one hand, one obvious question is: Is 〈〈 no-down-flow 〉〉 comparable
to any of the BSPs? If so, to which one? Given its ‘pruning nature’ it is very
tempting to say that UMLsec is very similar to the ‘R’ BSP of MAKS. It will
be indeed interesting work to try to establish this formally.

Now, if we can formally map the semantics of UMLsec to some BSP of
MAKS, can we extend UMLsec so that we can use all of the BSPs ? In principle
this sounds feasible but it would need a deeper comparison of the underlying
trace models. For example it was not very clear to the group if the use of
concrete Integer values in the method parameters as in UMLsec is somehow
incompatible with the MAKS definitions.

Towards verification Although we wanted to focus on the specification of
security properties and to compare different formally based techniques, another
important distinction point between UMLsec and MAKS must be made. Indeed,
MAKS allows a rich variety of subtle security definitions, whereas as discussed
before UMLsec is not so advanced with respect to information flow properties.
The strength of UMLsec resides however in its philosophy to combine the eas-
iness of system specification with automatic verification of security properties.
Traditionally, the kind of properties verifiable in UMLsec (and partially also
tool supported) are not information flow properties. It is an interesting re-
search path however, to investigate how could one automatically verify some
information flow properties given an explicit system construction (i.e a state
chart). Here one could benefit from the existing verification results (for ex-
ample the very general unwinding techniques) and compositionality results of
MAKS.

To experiment with the verification techniques, we could benefit from a
sketch of the system behavior we have depicted for the reviewing system by
means of a UML state chart (compare Figure 1).

2.2 Security properties in a reviewing system (Group 2)

Group 26 focused on an approach how to obtain a formal specification from an
informal requirement. The formalism taken into account by this group were
UMLSec [Jür05] and the Modular Assembly Kit for Security [Man00, Man03].
One focus of the work was to try a systematic approach towards formalization
of the properties.

2.2.1 Informal Security Requirement

We focus on two of the properties listed at the beginning of Sect. 2:
• Reviews are anonymous.
• Reviewers are not influenced by other reviewers.

The idea is that in this version of the reviewing system the reviewing phase is
distinct from a discussion phase. Only in the discussion phase a reviewer may
see other reviews.

5Although there is not an explicit verification strategy in UMLsec, just the definition of
the verification goal.

6Peter Fischer, Sebastian Pape, Barbara Sprick, Kurt Stenzel

11

2.2.2 1. Step: Security Policy

In a first step the security policy below is defined. Technically, this is a UML
class diagram. Unfortunately, UML does not provide the types of arrows used
for MAKS security policies. Therefore, the following convention is used: Dashed
arrows denote N flow (not visible, not confidential), lines without any arrows
denote visible flow in both directions, lines with two crosses at each end denote
confidentiality in both directions, simple arrows named “confidential” denote
confidentiality in this direction, and a simple arrow without name denotes visible
flow in the indicated direction. (The advantage of using UML – instead of xfig
or inkscape – for the policy is that the policy can be used by a tool for something
useful, e.g. input for a prover.)

OtherReviewerReviewer

Author

Chair

Confidential Confidential

To simplify the model a distinction between reviewer and OtherReviewer is
made. The idea is to express properties like Reviewer does not know if Other-
Reviewer has already submitted a review or not..

2.2.3 Step 2: Identifying Events

We identify the following events and assign them to security domains:

Event Assignment
assign(Author, Reviewer) Reviewer
assignOther(Author, OtherReviewer) OtherReviewer
review(Author, Reviewer) Reviewer
reviewOther(Author, OtherReviewer) OtherReviewer
submit(Author) Author
endSubmission Chair
endReview Chair

We consider only two phases of the reviewing process, the submission phase
where authors can submit papers, and the reviewing phase. The submission
phase ends with the endSubmission event and the reviewing phase ends with
the endReview event. Both can be initiated by the program chair. In the
reviewing phase a reviewer must first be assigned to a paper written by an
author before she can review the author’s paper. The assignment of events to
security domains leads to the following views:

12

Event Reviewer OtherReviewer Author Chair
assign V C C V
assignOther C V C V
review V C C V
reviewOther C V C V
submit V V V V
endSubmission V V V V
endReview V V V V

2.2.4 Step 3: Select BSPs

For the property

Reviewer does not know if OtherReviewer has already submitted a review or
not.

the BSPs IA + D seem appropriate at first for the Reviewer view:

D = ∀α, β ∈ E∗∀c ∈ C : β.〈c〉.α ∈ Tr ∧ α|c = 〈〉 ⇒ β.α ∈ Tr

IA = ∀α, β ∈ E∗∀c ∈ C : β.α ∈ Tr ∧ α|c = 〈〉 ∧ Admρ(Tr, β, c) ⇒
β.〈c〉.α ∈ Tr

with ρ = {submit, endSubmission, endReview} and

Admρ(Tr, β, e) = ∃γ ∈ E∗ : γ.〈e〉 ∈ Tr ∧ γ|ρ = β|ρ
Admissibility is chosen because we have a system in mind where first only sub-
missions by authors occur until endSubmission. Then reviewers are assigned
and do reviews until endReview. This means a reviewer knows that no other
reviews have been done before endSubmission occurs. So we have to modify our
informal property to

In the review phase Reviewer does not know if OtherReviewer has already
submitted a review or not.

Unfortunately, the formal specification IA + D includes all confidential events,
i.e. also assignOther. This means the specification translated back to informal
language means

In the review phase Reviewer does not know if OtherReviewer has already
submitted a review or not or was assigned to a paper or not.

Choosing IA + D with the same ρ for the Author view translates back to

Between endSubmission and endReview an author neither knows if (and what)
reviewers were assigned, nor if (and what) reviews have been submitted.

2.2.5 Step 4: Modify Security Policy

The problem is that the security policy was defined with all security properties
in mind (all security properties under consideration). The result was a formal
property that was stronger than the informal one; actually it was a conjunction
of two informal ones. To formalize each property precisely different security
policies are needed. The policy for In the review phase Reviewer does not know if
OtherReviewer has already submitted a review or not. is shown below. Here the

13

security domain for OtherReviewer is divided into two, one for the confidential
reviewOther event, and one for the not visible, not confidential assignOther
event.

OtherReviewer_Review

OtherReviewer_Assign

Reviewer

Author

Chair

Confidential

Confidential

Confidential

Confidential

2.2.6 Ideas for a Systematic Approach

We start with a set of informal security requirements that we want to formalize.
One step will be to decide what formalism is appropriate for each requirement.
For information flow this means to identify those requirements that will be
formalized with sets of traces. Others can be formalized for example with one
trace, or for one state.

This may require a reformulation of requirements, or a division of one re-
quirement into several. The relation between original and modified requirements
should be documented.

We see three approaches to a formalization of the requirements (in our case
the information flow requirements to be formalized with MAKS): individual,
accumulated, or incremental. The three approaches are described in turn.

Individual. The idea is to treat each requirement as if it was the only property
to formalize. Often, a security property describes interests or restrictions of one
stakeholder. In this case a security domain for the stakeholder must be defined,
and also for others. After identifying the relevant events, a view (possibly
several) can be defined, and BSPs selected. This is done for every requirement.

The result will be a set of specifications with different events, views, and
security domains. An actual system that must fulfill all requirements will have
only one set of events. This means that in a second phase the different specifi-
cations must be aligned in some sense. One idea could be to take the union of
all events, and modify all specifications:

• New Events are the union of all events.

• The views must be extended for the new events. Probably they will be
either visible or not visible, but not confidential.

14

• The BSPs remain unchanged.

It must be checked if the new specification still is an appropriate formalization
of the informal requirement.

The resulting specifications will have the same events, but probably conflict-
ing views for one security domain. (An event can be visible for one property,
but must be confidential for another.) However, this seems to be no problem.

Accumulated. Here, all requirements are considered at once. A security
policy is defined that may contain several security domains for each stakeholder.
All events are defined and mapped to domains. Then BSPs are selected for the
views, and the result is the formalization of all requirements at once.

As the example in the previous section shows it is no longer possible to
specify each property individually. Rather a set of BSPs for one view may
formalize a conjunction of several original properties, or a stronger property
than an original one. The formalization should be translated back into informal
language, and the relation to the original properties should again be documented
(and checked to be appropriate).

In contrast to the individual approach there is only one view for each security
domain. An actual system again must fulfill all BSPs.

Incremental. Perhaps it is possible to start with one property, then consider
a second property, and modify the events, security domains, etc. to have a spec-
ification for both properties. In the end the result is similar to the accumulated
approach.

Perhaps it is possible to further divide the properties into groups, and treat
each groups individually with an accumulated approach.

Sanity check. It is easy to make the restrictions on information flow too
strong. Usually, one has some kind of system model in mind that could serve
as an abstract specification of the system. In our reviewing system we have in
mind a submission phase (where only submissions occur), then a review phase
(with review assignments and actual reviews).

SubmissionPhase

submit

ReviewPhase

assign, assignOther, review, reviewOther

, endSubmission
endReviews

It may be a good idea to check the formalized requirements against this
model. This may help to detect impossible requirements. (Example: Before the
end of the submission phase every reviewer knows that no reviews have been
submitted yet. The requirement concerning no knowledge about other reviews
makes sense only in the review phase. This requires a BSP with admissible
predicate.)

2.2.7 Formalization in UMLsec

Based on the no-down-flow example for accounts, a formalization of a security
property could be class with “high” annotations but no associated state ma-

15

chine. (The state machine already describes an actual system.) Each security
properties can be described by one class. Two examples are shown below.

+assign()
+assignOther()
+review()
+reviewOther()
+endSubmission()
+endReviews()
+submit()

<<no-down-flow>>

System_Author

{high = { assign, review, assignOther, reviewOther }}

+assign()
+assignOther()
+review()
+reviewOther()
+endSubmission()
+endReviews()
+submit()

<<no-down-flow>>

System_Reviewer

{high = { assignOther, reviewOther }}

Naming conventions are used to show that these are two requirements for the
same system. Both classes have the same events (defined as UML operations).
An alternative is to make the “high” annotation more complex by including
different views, e.g.

high = {V iew(Reviewer) = {assignOther, reviewOther},
V iew(Author) = {...}}.

Later on each class can be associated with the same state machine (at least
conceptually, it may not be possible in UML), and UMLsec can be used to check
each system.

2.2.8 Further Ideas

An integrity property may be:

The chair is not influenced by the (number of) submissions in his
decision to end the submission phase.

To formalize this property means that the submission event is confidential for
the chair. Indeed, if the chair has no knowledge about submissions he cannot
be influenced in his decision by them.

3 Formalizing Security Properties for
Mobile Applications

During the follow-up meeting, the considered scenario was that of applications
running on mobile devices. On the first day, there was a common session with
all participants addressing the general methodology of the ongoing consider-
ations regarding the informal definition of information flow and the scenarios
resulting out of it. On the second day, there were two groups. One group used
requirements from this scenario to take a closer look at the particularities in
the treatment of events that are neither confidential nor observable. The other
group considered the specification of integrity properties at the example of a
mobile devices scenario.

Since both groups took a different focus, the concrete scenario and require-
ments considered will be introduced in the sections of the respective groups.

16

3.1 Common Session on the General Methodology

We still considered the scenario of applications (apps) running on mobile devices.
We first discussed which kind of communication between mobile devices we need
to address resulting in informal definitions of information flow scenarios.

3.1.1 Step 1: Finding Informal Definitions of Information Flow Sce-
narios

Possible differences in scenarios regarding different demands on information flow
properties are the way the apps communicate with each other. There are at least
three different ways to distinguish the communication channels to regards:

• Apps do not only communicate via open channels. Rather, they may also
use covered channels. The resulting requirement would be that apps do
not influence each other in any way. This would in particular demand the
underlying hardware and operating system to meet certain requirements.
Especially, if the resources available to the apps – such as cpu power or
used memory – are also considered and not allowed to be a source of
influence.

• Apps do only communicate via open channels. In this case the require-
ments need to be instantiated for particular applications.

• Apps do neither communicate via open channels nor do they communicate
via covered channels. If the considered apps do not communicate, the
requirement is trivially fulfilled.

3.1.2 Step 2: Refining the Requirements to Comply with the Chosen
Setting

The three described ways are already ordered in decreasing complexity. Since
the case that apps do not communicate with each other already fulfills the
requirement, the most natural way is to consider the easiest of the remaining
cases: Apps do only communicate via open channels.

Some instantiations of real live examples for this case are:

1. Messages sent to Google Maps App may not influence to whom the Google
Maps App is sending GPS coordinates.

2. Google Maps App is not allowed to transmit any GPS data outside the
mobile device.

3. An app is allowed to update online. Other apps may neither initiate nor
prohibit the update.

4. As item 3, but other apps may additionally not detect if an update was
performed.

5. An app has special permissions to delete files on the mobile device’s SD
card. Other apps may not influence this app to actually delete files.

6. As item 5, but other apps may cause the app to delete files – after the
user’s explicit confirmation.

17

3.1.3 Step 3: Finding Adequate Meanings of MAKS-BSPs

For this step we need to use particular examples of the instantiations. We chose
the examples 3 and 4 from Sect. 3.1.2 since they are on the one hand simple
and on the other hand descriptive. Therefore, they are appropriate to serve as
demonstration.

We distinguish between App1, the app (possibly) performing the update and
App2, the adversary trying to observe, initiate or prohibit App1’s update. For
each BSP there are the following meanings.

R: • Independently of App2’s observations, App2 may not conclude that
App1 did not perform an update.

• App2 may not conclude from its observations that App1 performed
one or more updates.

SD: • Independently of App2’s observations, App2 may not conclude, how
many updates App1 performed7.

• App2’s observations do not help App2 learning how many updates
App1 performed. But App2 may get knowledge on the number of
updates from the system’s specification.

• App2 may conclude that App1 performed at most n updates, but
App2 may not conclude how many of the first n updates were really
performed by App1.

SI: • Independently of App2’s observations, App2 may not conclude that
App1 has not performed an update.

• Independently of App2’s observations, App2 may not exclude that
App1 performed an update.

• Independently of App2’s observations, App2 may not exclude that
App1 performed n updates (for arbitrary n).

• Independently of App2’s observations, App2 may not exclude that
after the updates App1 actually performed, App1 performed further
updates.

• App2 may possibly conclude, that App1 performed n updates, but
App2 may not conclude if App1 performed further update afterwards.

D / BSD: • Analogous to item SD: App2 may possibly conclude, that
App1 performed at most n updates, but App2 may not conclude
how many of the first n updates were really performed by App1.

However, these intuitive statements are not the full truth, several observa-
tions, comments and questions arise:

Observation on SD and SI The referred BSPs describe more than we spec-
ified as intuitive statement. That means, if the BSPs SD and SI are fulfilled,
they make a statement that App2 is not able to learn something on the num-
ber of updates in a certain sense. But this statement could also be given with
statements which do not delete or insert events at the end of the trace but on
arbitrary positions in the trace.

7Neglecting the fact that the maximum number of updates may be learned from knowing
the set of possible traces.

18

Comment It may be useful to also introduce some N-events for the compar-
ison of the BSPs.

Upcoming questions

• What happens if N-events are only sometimes seen? For example due to
different routes of packages through the network.

• Given the events ”request update” and ”send new data”, do they both
need to be confidential? Or only one of them? Do we need to find a more
precise informal requirement for this? Variants:

– Request for update is confidential

– Receipt of the update is confidential

– Request for and receipt of the update are confidential

• Is it possible at all to keep the receipt of the update confidential or is it
only possible to keep the installation of the update confidential? Do we
need a further event ”install update”?

• Is non-determinism dissolved at implementation time? Is non-determinism
dissolved at running-time?

• Some non-determinism may support security, some may not. How can we
distinguish them?

• General question regarding SD: Why is the last C-Event deleted and not
an arbitrary one?

3.2 Corrections in Basic Security Properties (Group 1)

In this group8 on the intuition of MAKS-BSPs D, SD, BSD and I, SI, BSI. In
particular, we wanted to explore when each of the three variants (Non-strict,
strict, backwards-strict) is sensible.

Intuitively, using non-strict or backwards-strict BSPs permits to explore
flexibility provided by the events in the set N , i.e., events that are neither
visible to the attacker nor confidential. Such BSPs do not require that deleting
/ inserting confidential events into a trace results in another trace, but that it
should results in another trace that agrees on confidential and visible events.

An example in [Man03] illustrates that exploiting this flexibility might not
be adequate in the presence of Trojan horses (Example 3.4.22).

Inspired by this example, we investigated the adequacy of D, SD, and BSD
for a scenario with the following attacker model:

• The attacker has successfully placed a Trojan horse with access to secret
information. The Trojan horse provides “high” inputs to a system in order
to transmit this information to the attacker.

• The attacker observes the system over which the Trojan horse attempts to
transmit information. The attacker observes “low” outputs of the system.
From these observations, he tries to deduce which inputs were provided
by the Trojan horse.

8Christoph Feller, Peter Fischer, Andreas Lehmann, Martin Ochoa, Sebastian Pape, Hen-
ning Sudbrock

19

We observed that one can consider the Trojan horse as a refinement of the
system, and that this may lead to problems using non-strict BSPs:

If a Trojan horse is influencing the system, some previously possible traces
may become unfeasible. That means, if the behavior of the system is described
by a set of possible traces, this set may contain traces which do not occur
when the Trojan horse is influencing the system. This behavior may regarded
as conducting a refinement by including the Trojan horse into the system’s
specification. Regarding the system’s security the resulting problem is that
BSPs are not preserved under refinement. The intuition of the Trojan horse’s
consequence is as follows: A BSP assures that for each observed trace there exist
at least one more trace with different confidential events which also explains the
adversary’s observations. If the Trojan horse prevents the other possible traces
from appearing, it may draw conclusions of its observations and thus the security
guarantee is lost.

This leads to the following ideas for future work:
Which conditions need to be demanded for refinements of the set of possible

traces to preserve the validity of the particular BSPs? Which meanings do these
requirements have regarding the power of the Trojan horse?

Or, to turn the question around: For which refinements/Trojan horses are
the BSPs D/SD/BSD suitable? Are there any requirements regarding the set
of (possible) traces itself?

So when is D, BSD, respectively BSD adequate? The following describes
what we believe could be the intuition:

• D is suitable, if Trojan horses are not regarded by the security require-
ments.

• BSD is suitable, if only Trojan horses are regarded, which act at a certain
point of time only depending on already occurred events.

• SD is suitable, if only Trojan horses are regarded, which act at a certain
point of time only depending on already occurred or future events.

Claim 1: Since there are other Trojan horses (for an example see below), for
some of them neither SD nor BSD nor D are suitable. Claim 2: The considera-
tions above should work analogous for the BSPs I, BSI and SI.

Claim 1 and Claim 2 need to be verified.
Example for which BSD is not adequate:
• Set of Traces: ((N(x),V(x)) — (C(x),V(x)))*, x is a number
• N(x) happens if for a certain time no C(x)-Event has happened (timeout)
• The Trojan horse assures the timeout does not occur by initiating C(x)-
Events

• BSP BSD is fulfilled: If a C(x)-Event is deleted, a N(x)-Event may be
inserted instead

Example for which BSD is not adequate:
• Set of Traces: (V(x) — (C(x),V(x)))*, x is a number
• V(x) happens if for a certain time no C(x)-Event has happened (timeout)
• The Trojan horse assures the timeout does not occur by initiating C(x)-
Events

• BSP SD is fulfilled: If a C(x)-Event is deleted, the trace is still valid

20

Our conclusion: Three possible aspects one could use when deciding which
BSP(s) to use:

1. As in [Man03]: Does one want to keep the existence or non-existence of
confidential events secret? ⇒ Choose either Insertion or Removal/Deletion-
BSP

2. Does one want to keep the existence or the number of occurred confidential
events secret? ⇒

• Choose BSP R to keep the existence of a C-Event secret.
• Choose BSP D, SD or BSD to allow the adversary learning that at
most n C-Events occurred, but to keep the exact number which of
those n events at least occurred secret.
Caution: BSP D, SD and BSD do not assure that the order of oc-
curred/occurring C-Events is kept secret.

• Choose BSP I, SI, BSI, IA, SIA or BSIA to allow the adversary learn-
ing that at least n C-Events occurred, but to keep the information
secret if after these n C-Events any other C-Event(s) happened.
Note: For I-Variants this require that an infinite number of C-Events
may occur at arbitrary positions.

• Choose combinations of the BSPs I and D to keep the number of
occurred C-Events secret.

3. Does one want to regard systems where it can be neglected that Trojan
horses want to communicate via the system, or do Trojan horses need to
be regarded?9

• Choose D/R/I/IA-BSP if no Trojan horse needs to be considered.
• Choose BSD/BSI/BSIA-BSP 10, if only Trojan horses should be re-
garded, who act only depending on the previous system’s behavior.

• If arbitrary Trojan horses should be regarded, there seems to be no
suitable BSP(s).

3.3 Formalizing Integrity with MAKS (Group 2)

In this group11 we considered the following scenario: Two applications App1 and
App2 are running in parallel on the same device. Both applications can trigger
a communication with the other app. Both applications have some internal
behavior that is independent of the other app. Furthermore, app 1 can request
and receive updates from internet and then install them.

The integrity property we looked at is as follows:

App2 can neither trigger nor prohibit an update/install of App1.

Integrity is considered dual (complementary, inverse) to confidentiality. Hence,
we assume that a formalization can invert the confidentiality formalization.

This means we define a view for App1 (instead of App2) with the following
classification of events:

9Note: This intuitions are more vague than those before.
10alternatively one of the SD/SI/SIA-BSPs may be chosen. That would be more restrictive.

Maybe the BSP SR is also interesting. Regarding the BSP BSR it is not clear what is meant
by “backwards strict”

11Jan Jürjens, Kuzman Katkalov, Stefan Pfeiffer, Thomas Ruhroth, Barbara Sprick, Kurt
Stenzel

21

“corrupting” C = { communicateAB, communicateBA, computeB }
N = { request, send, computeA }

“veritable” V = { install }
Since we are talking about integrity, C should be seen as meaning corrupting

instead of confidential and V as veritable instead of visible. Intuitively, the
occurrence or non-occurrence of C events cannot influence V events which is
the integrity property.

Does the classification above make sense? Yes. install is the event to pro-
tect. communicateBA is an event under the control of App2, and a message
from App2 to App1 should not influence install, i.e. it is in C. The same holds
for computeB. Depending on the assumptions about the execution environment
this may be trivially true, but putting it in C says that it should not influence
install, independent of the execution environment. communicateAB in C may
seem strange at first since the event is controlled by App1. However, it also
could be a way to influence install, e.g. by an answer from C, or in case of a
synchronous communication, by blocking. In case of an asynchronous communi-
cation communicateAB could be in N. The N events request and send obviously
are necessary for install, i.e. influence install, and computeA probably will also
influence install. To summarize, the view captures the intuition of the integrity
property.

What BSPs are adequate?

• SR is too weak. Example1:

{ [], [communicateBA], [install] }
fulfills SR, but if App2 starts with communicateBA, no install happens,
i.e. App2 prohibits the update (actually blocks App1 completely).

• IA is too weak. Example2:

{ [], [communicateBA], [communicateBA.install] }
IA is fulfilled with ρ(V iew) = E, but here App2 triggers install with
communicateBA.

• Perhaps D + IA (or BSD + BSIA) are adequate.

We also considered separability, i.e. arbitrary interleaving of V-traces and C-
traces. This property seems to be too strong:

• Example3:

{ [], [install], [install.communicateAB] }
This system is secure since corrupting events happen only after the install.
However, it does not fulfill separability. On the other hand, IA is fulfilled.

The question remains if a combination like BSD + BSIA is also too strong, i.e.
excludes systems that are (intuitively) secure concerning the integrity property.

Nevertheless, integrity properties can be formalized in a systematic manner
similar to confidentiality properties.

22

4 Lessons learned and Conclusion

The workshop was very successful. Participants from different projects with
different fields of expertise worked together productively on several problems
and aspects of formalizing security properties. Besides learning something the
joint work has led to a common understanding and ideas for future collaboration.
Some of the lessons learned are:

• Informal security requirements usually cannot be formalized directly (or
exactly) because they are too imprecise or because they encompass several
properties at once.

• Formalizing a requirement with an information flow property requires the
definition (and assignment) of security domains. Here is a choice: If the
requirement should be captured exactly then different (assignments of)
security domains may be necessary for different requirements. If the aim
is to have only one definition (and assignment) of security domains then
the formalization will capture several individual requirements.

• Formalizing a requirement with an information flow property requires the
assignment of security domains to all events/operations. Often the re-
quirement is only concerned with one event. Then it is not clear how to
assign the other events.

• It is very important to translate a formal property back into informal
language to validate whether the original requirement was captured ade-
quately.
This can lead to an iterative process where the informal requirement and
the formalization are refined so that they ‘fit’ together.

• It is easier to formalize a security requirement for an existing system than
to formalize it before the system exists. On the one hand some part of the
system must be mentioned in the specification (e.g. events), on the other
hand the formalization should not be too restrictive for real systems. For
example, in a real system it may be acceptable that a property holds only
during a certain application life cycle phase.

• Integrity can be formalized with information flow properties, but requires
a different thinking than confidentiality.

Acknowledgments. The topic workshop was sponsored by the priority
programme 1496 “Reliably Secure Software Systems” (RS3) of the Deutsche
Forschungsgemeinschaft DFG, and the authors of this technical report by the
DFG projects FM-SecEng in the Computer Science Action program (MA 3326/1-
2), IFlow in the priority programme RS3 (RE 828/15-1), and MoDelSec in the
priority programme RS3 (JU 2734/1-1).

23

A A Collection of Security Properties

This section presents a first version of a collection of security properties for
different application areas.

It is not intended to be comprehensive or structured (the properties some-
times contradict each other), but may serve as a starting point from a software
engineering point of view.

The areas are

1. Smart phone apps

2. Separation kernels, esp. in

(a) Automotive (different control circuits on one bus)

(b) Avionics (different safety-critical applications on one chip)

3. Multi-applicative smart cards

4. Conference reviewing system

5. E-Voting

6. Web server applications and browsers

7. Intrusion detection and system administration

8. Enterprise systems

9. Cloud computing

10. Travel planner (as a concrete smart phone app)

A.1 Smart Phone Apps

1. I (the user/owner of the smart phone) know to what destination an App
transmit data.

2. I can control how data is transmitted and/or stored.

3. My data is transmitted only to the intended recipient.

4. My private data is never transmitted.

5. An App never accesses private data.

6. Apps have no covert channels (their behavior does not depend on private
data).

7. Apps never influence each other or only in controlled ways.

8. No data about App usage is transmitted, not even statistical or anonymized
data.

9. Location data is never stored (or only in a secure manner)

10. It is not possible to track the movements of a smart phone owner.

24

11. Others (e.g. provider) cannot identify a smart phone owner.

12. A payment operation with the phone happens only after explicit confir-
mation.

13. I control what data is exchanged in 0-click apps.

14. If my contact data is transmitted to another phone it is not disseminated
further.

15. The data received by an app (or network) provider is not disseminated
further.

16. The smart phone cannot be used by other persons.

A.2 Separation Kernels

1. Car: The infotainment system does not interfere with brakes, air bag, etc.

2. Car: It is not possible to interfere with the internal circuits from out-
side the car (e.g. opening the doors by manipulating the circuitry of the
external mirror).

3. Car: The odometer cannot be manipulated.

4. Car: logged data cannot be manipulated, and can be accessed only by
authorized entities.

5. Car: The sequence (order) of events has no influence on functionality
(example with a truck: entering, turning radio on/off, leaving by the other
door blocks the starter)

6. Avionics: cabin events do not interfere with flight systems (e.g. switching
the reading light on does not shut down the auto-pilot).

7. Avionics: Several systems on one chip behave as if each system had its
own chip.

8. Avionics: Systems never influence each other except in well-defined situ-
ations (take-off or landing)

9. The order of events has no influence on system behavior.

A.3 Multi-applicative Smart Cards

1. Apps can exchange data on in a controlled manner.

2. Dynamic (i.e. after the smart card was issued) installation of new apps
does not influence already installed apps.

3. It must be possible that a dynamically installed app communicates with
an existing app (e.g. a payment app).

4. A smart card and its environment (e.g. phone and SIM) interact only in
a controlled way.

25

A.4 Conference Reviewing Systems

1. Only PC members can see all submissions.

2. Only after submitting a review can a reviewer see other reviews.

3. A reviewer does not know if other have already submitted reviews.

4. Reviewers are not influenced by other reviewers.

5. Persons with multiple roles have restricted privileges (e.g. a PC member
that also submits a paper can see all reviews except for her own paper
during the review phase).

6. Reviewer are anonymous (to authors and possibly each other).

7. In a double blind review process the reviewers do not know the identities
of the authors.

8. only accepted papers are made public, and only after the end of the review
phase, but statistics about submissions are published.

9. Reviews are never deleted, all remain accessible. A user cannot cause a
review to become invisible.

10. A reviewer can only submit reviews to papers she was assigned for.

11. A reviewer may not write (or view) reviews for papers with a conflict of
interest.

12. Authors are anonymous until after bidding.

13. An author (paper submitter) cannot see other submissions.

A.5 E-Voting

1. It is (and remains) secret if and what I have voted.

2. Every vote is counted correctly.

3. I can verify if my vote was counted correctly.

4. It is not possible to prove to others what I have voted.

5. It is possible to vote, but/and only eligible persons can vote.

6. Everybody can vote at most once.

7. The final tally is secret until the end, and no intermediate results become
known.

8. The final tally corresponds to the actual votes.

9. Different actors may have only certain (what?) knowledge.

26

A.6 Web Server Applications and Browsers

1. Entering data on the server does not influence the behavior of other clients
(XSS, cross site scripting).

2. CSFR (cross site request forgery).

3. User input causes only the intended modifications and results to a data
base (SQL injection).

4. Input channels can only be used for the intended information.

5. A click means what the user expects (click highjacking).

6. Same-origin policy.

7. Pages in different tabs are independent from each other.

A.7 Intrusion Detection and System Administration

1. A user has no knowledge about the IDS (whether it runs or not, how it is
configured, etc.).

2. A user cannot find out if the account of another user is disabled.

3. An intruder does not notice that he was detected.

4. An intruder cannot influence the IDS in his favor (e.g. disable it).

5. A user cannot learn if another user is logged in or not, and learns nothing
about her activities.

A.8 Enterprise Systems

1. Access to single or aggregated data is allowed, but not direct access to all
data.

2. It is allowed to access data, but not to pass it on.

3. It is not possible for a user to give himself the permission for an action (if
somebody else should do it).

4. Separation of duty, 4 eye principle.

5. Chinese wall: After access to certain data the access to certain other data
is prohibited.

6. A backup cannot interfere with running processes (e.g. an emergency sys-
tem in a hospital).

7. A service center working with data from different sources cannot link the
data (e.g. hospital bill and insurance for one person).

8. Human resources department is separated from payment system is sepa-
rated from illness days.

9. Elena (e.g. a future employer cannot access my current payment)

10. Separation of private and business data (e.g. Bahncard).

27

A.9 Cloud Computing

1. Two users cannot gain knowledge about each other and cannot interfere
with each other.

2. The provider cannot access user data.

3. It is possible to really delete data.

4. Information that was deleted by the user do not influence future actions
(this includes backups, version control systems etc.).

5. Access to data by employees is logged.

6. Data must remain within certain bounds (or limits, because of legal rea-
sons).

A.10 Travel Planner: General Requirements

The travel planner is a mobile App that is used as a running example in the
IFlow project. The user selects an appointment from her calendar App and
wants to book a flight and a hotel. The travel planner App communicates with
a travel agency to obtain flight and hotel offers. Booking is done directly with
an airline or hotel using the credit card data stored in another App on the smart
phone. The travel agency gets a commission for a booking from the airline or
hotel.

1. A booking takes place only after explicit confirmation.

2. Credit card data is used only for the booking.

3. The travel agency does not know the booking data, has not knowledge
about a booking (in a version without commission).

4. The travel agency does not know the identity of the user.

5. Only the minimal necessary data of the selected event is transmitted, and
only to the travel agency.

6. Booking data is transmitted only to the selected airline/hotel.

7. No other data is transmitted.

8. Only the travel details are stored in the calendar, nothing else is modified.

9. The credit card data is never modified (a malicious agent cannot influence
the occurrence of the event “modify credit card data”).

A.11 Travel Planner: Specific Requirements

1. Private calendar entries do not leave the calendar app and can be seen
(or modified) only by the user. (Other agents cannot be the cause that
entries are seen/modified.)

28

2. Public calendar entries may flow to the travel planner app if the app was
started by the user that also made the entry. The skeleton data of the
entry influences future queries. Only the skeleton data may leave the
phone.

3. The TravelOptions entered by the user are incorporated in the FlightRe-
quest and the HotelRequest. The policy for this user data must be weak-
ened to the policy of the requests.

4. The FlightRequest is visible to the airline. The travel agency transmits
the request. (Can the travel agency read the request?)

5. The filtered FlightOffers are destined for the user/travel planner instance.
The travel agency transmits the data to the recipient. The airline does
not know the user.

6. The travel agency does not know which (or if a) FlightOffer was selected.
The FlightOffer may flow only to the intended airline. However, the con-
tained BookingInformation must also flow to the travel agency. (This
requires different policies in one message.)

7. The travel agency cannot link a BookingInformation with a FlightRequest.
(Assuming that linking by timing is not possible because many requests
are submitted in a short period of time.) Or the travel agency cannot read
a request at all.

8. Items 4–7 similarly hold for the hotel booking.

9. Credit card data may leave the credit card app only after confirmation by
the user, and may flow only to the airline/hotel of the booked flight/hotel.

29

References

[GM82] J. A. Goguen and J. Meseguer. Security Policies and Security Models.
In Proceedings of the IEEE Symposium on Security and Privacy (S&P),
pages 11–20, Oakland, CA, USA, 1982. IEEE Computer Society.

[Jür05] J. Jürjens. Secure Systems Development with UML. Springer, 2005.

[Man00] H. Mantel. Possibilistic Definitions of Security – An Assembly Kit. In
Proceedings of the IEEE Computer Security Foundations Workshop,
pages 185–199, Cambridge, UK, 2000.

[Man03] H. Mantel. A Uniform Framework for the Formal Specification and
Verification of Secure Information Flow. PhD thesis, Saarland Uni-
versity, Saarbrücken, Germany, 2003.

30

